Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 26(1): e12875, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031744

RESUMO

The development of opioid addiction involves DNA methylation. Accordingly, the DNA demethylation, induced by ten-eleven translocation (Tet) enzymes, may represent a novel approach to prevent opioid addiction. The present study examined the role of TET1 and TET3 in the development of morphine-seeking behavior in rats. We showed that 1 day of morphine self-administration (SA) training upregulated TET3 but not TET1 expression in the hippocampal CA1. With 7 days of morphine SA training, the expression of TET3 in the CA1 returned to the baseline level, while the TET1 expression was downregulated. No change of TET1 and TET3 in the nucleus accumbens shell was observed in morphine SA trained rats, or in the yoked morphine rats, or in rats trained for saccharin SA. Furthermore, we found that knocking down TET3 expression in the CA1 accelerated the acquisition of morphine SA, while overexpression of the catalytic domain of TET1 in the CA1 attenuated the acquisition. Together, these findings suggest that TET1 and TET3 in the CA1 are important epigenetic modulators involved in the morphine-seeking behavior and provide a new strategy in the treatment of opioid addiction.


Assuntos
Dioxigenases/metabolismo , Hipocampo/metabolismo , Morfina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Masculino , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Ratos , Autoadministração
2.
Addict Biol ; 25(2): e12730, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30950138

RESUMO

Drug-reinforced excessive operant responding is one fundamental feature of long-lasting addiction-like behaviors and relapse in animals. However, the transcriptional regulatory mechanisms responsible for the persistent drug-specific (not natural rewards) operant behavior are not entirely clear. In this study, we demonstrate a key role for one of the de novo DNA methyltransferase, DNMT3a, in the acquisition of morphine self-administration (SA) in rats. The expression of DNMT3a in the hippocampal CA1 region but not in the nucleus accumbens shell was significantly up-regulated after 1- and 7-day morphine SA (0.3 mg/kg/infusion) but not after the yoked morphine injection. On the other hand, saccharin SA did not affect the expression of DNMT3a or DNMT3b. DNMT inhibitor 5-aza-2-deoxycytidine (5-aza) microinjected into the hippocampal CA1 significantly attenuated the acquisition of morphine SA. Knockdown of DNMT3a also impaired the ability to acquire the morphine SA. Overall, these findings suggest that DNMT3a in the hippocampus plays an important role in the acquisition of morphine SA and may be a valid target to prevent the development of morphine addiction.


Assuntos
Região CA1 Hipocampal/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dependência de Morfina/metabolismo , Morfina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , DNA Metiltransferase 3A , Modelos Animais de Doenças , Masculino , Morfina/administração & dosagem , Entorpecentes/administração & dosagem , Entorpecentes/farmacologia , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração
3.
J Insect Sci ; 18(2)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718485

RESUMO

Vitellogenin (Vg) and vitellogenin receptor (VgR) play important roles in the vitellogenesis of insects. In this study, we cloned and characterized the two corresponding genes (TpVg and TpVgR) in an economically important insect, Thitarodes pui (Lepidoptera: Hepialidae), from the Tibetan plateau. The full length of TpVg is 5566 bp with a 5373 bp open reading frame (ORF) encoding 1,790 amino acids. Sequence alignment revealed that TpVg has three conserved domains: a Vitellogenin_N domain, a DUF1943 domain, and a von Willebrand factor type D domain (VWD). The full length of TpVgR is 5732 bp, with a 5397 bp ORF encoding 1798 amino acids. BLASTP showed that TpVgR belongs to the low-density lipoprotein receptor (LDLR) gene superfamily. Structural analysis revealed that TpVgR has a group of four structural domains: a ligand-binding domain (LBD), an epidermal growth factor (EGF)-precursor homology domain, a transmembrane (TM) domain, and a cytoplasmic domain. In addition, TpVgR has four cysteine-rich LDL repeats in the first ligand-binding site and seven in the second. Quantitative real-time polymerase chain reaction analysis revealed that the expression levels of TpVg and TpVgR are much higher in later pupa than in either the larval or adult stage, implying that the synthesis and uptake of Vg in T. pui occurs in the later pupal stage. These results will help us to understand the molecular mechanism of the reproductive capacity and will provide new insight into the mass rearing and utilization of T. pui.


Assuntos
Proteínas do Ovo/metabolismo , Mariposas/metabolismo , Receptores de Superfície Celular/metabolismo , Vitelogeninas/metabolismo , Animais , Proteínas do Ovo/química , Proteínas do Ovo/genética , Feminino , Mariposas/química , Mariposas/genética , Filogenia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Análise de Sequência de DNA , Vitelogeninas/química , Vitelogeninas/genética
4.
Artigo em Chinês | MEDLINE | ID: mdl-26016238

RESUMO

OBJECTIVE: To investigate the effects of serotonin (5-HTIA) receptors in the hippocampal dentate gyrus (DG) on active avoidance learning in rats. METHODS: Totally 36 SD rats were randomly divided into control group, antagonist group and agonist group(n = 12). Active avoidance learning ability of rats was assessed by the shuttle box. The extracellular concentrations of 5-HT in the DG during active avoidance conditioned reflex were measured by microdialysis and high performance liquid chromatography (HPLC) techniques. Then the antagonist (WAY-100635) or agonist (8-OH-DPAT) of the 5-HT1A receptors were microinjected into the DG region, and the active avoidance learning was measured. RESULTS: (1) During the active avoidance learning, the concentration of 5-HT in the hippocampal DG was significantly increased in the extinction but not establishment in the conditioned reflex, which reached 164.90% ± 26.07% (P <0.05) of basal level. (2) The microinjection of WAY-100635 (an antagonist of 5-HT1A receptor) into the DG did not significantly affect the active avoidance learning. (3) The microinjection of 8-OH-DPAT(an agonist of 5-HT1A receptor) into the DG significantly facilitated the establishment process and inhibited the extinction process during active avoidance conditioned reflex. CONCLUSION: The data suggest that activation of 5-HT1A receptors in hipocampal DG may facilitate active avoidance learning and memory in rats.


Assuntos
Aprendizagem da Esquiva , Giro Denteado/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...