Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066422

RESUMO

Cu(In, Ga)Se2 (CIGS) thin films have attracted considerable interest as potential photovoltaic solar cells. Moreover, several current studies are focusing on improving their conversion efficiency. This study proposes a method to process micro- and nanostructures onto the surface of CIGS/ITO bilayer films to broaden the field of solar cell application. The bilayer films exhibited optical characteristics different from those of a single-film during processing. Field intensities at different layer positions of the CIGS/ITO bilayer films were analyzed, and different structures were fabricated by varying a set of parameters. Ripples were obtained using a pulse energy of 0.15 µJ and scanning speeds in the range of 0.1-1 mm/s, but after increasing speed to 3-5 mm/s, ripple structures were produced that had a large period of several microns and spatial porous nanostructures. This pattern exhibited low reflectivity. Optimal structures were obtained at a scanning speed of 3.5 mm/s a pulse energy of 0.15 µJ, and a reflectivity lower than 5%. Large areas characterized by micron-sized ripple structures and accompanied by nanoscale porous structures presented high optical performance and efficiency, which can be used to broaden the application of thin film-based solar cells.

2.
Opt Express ; 27(19): 26264-26280, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674512

RESUMO

Silicon carbide (SiC) ceramics have been widely used for microelectronics, aerospace, and other industrial fields due to their excellent chemical stability and thermal tolerance. However, hard machinability and low machining precision of SiC ceramics are the key limitations for their further applications. To address this issue, a novel method of underwater femtosecond laser machining was introduced in this study to obtain high precision and smooth surface of the microgrooves of SiC ceramics. The removal profiles were characterized in terms of width, depth, and surface morphology, which exhibited high dependence on the femtosecond laser processing parameters. The instability during the underwater processing affected by laser-induced gas bubbles and material deposition, however, limits the high surface accuracy of microgrooves and processing efficiency. The process condition transformation from a bubble-disturbed circumstance to a disturbance-free model was carefully investigated through a high speed camera for the femtosecond laser processing of SiC ceramics in water. The experiment results indicated that degree of disturbed effect was heavily dependent on size, distribution, and motion of laser-induced gas bubble. Furthermore, some typical evolution mechanisms of gas bubble and their influence on the removal profiles of microgrooves were discussed in detail. Bubble evolution has been proven to be mainly responsible for the behavior of laser propagation (focus model, total reflection, etc.), which notably affects microstructural characteristic of the microgrooves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...