Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(25): 10626-10636, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859681

RESUMO

A photorechargeable supercapacitor was constructed using vanadium pentoxide (V2O5), reduced graphene oxide hydrogel (rGH), and zinc trifluoromethanesulfonate (Zn(CF3SO3)2) as the photoanode, cathode, and electrolyte, respectively. The phase composition, microstructure, chemical structure, light absorption, and specific surface area of the synthesized products and the electrochemical performance of the rGH/V2O5 supercapacitor were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Vis spectroscopy, the Brunauer-Emmett-Teller (BET) method, and an electrochemical workstation, respectively. The results show that the device has a specific capacity of 164 F g-1 at 0.5 A g-1 under illumination with 95 mW cm-2 light intensity, which is 20.5% higher than that under normal electrical charging. The supercapacitor has a 75% capacity retention rate and 100% coulombic efficiency, respectively, after 10 000 testing cycles under photoelectric synergistic charging and discharging. The as-constructed rGH/V2O5 photorechargeable supercapacitor exhibits promising application potential in electric vehicles and wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...