Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(4): 823-830, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38174952

RESUMO

Aniline derivatives are important nitrogen-containing compounds with wide applications in chemicals, pharmaceuticals and agrochemicals. In the work described herein, nickel(II)/Lewis acid (LA) catalysed olefin hydroamination with anilines was explored for use in aniline derivative syntheses. The Ni(II)/LA catalysis proceeded smoothly under mild conditions, whereas using Ni(OAc)2 alone, the catalyst was inactive. Remarkably, the Markovnikov addition type products were obtained when substituted styrenes were used as the olefin source, while the anti-Markovnikov addition type products were obtained when the electron-deficient olefins such as acrylonitrile and acrylates were used. The mechanistic studies revealed that hydroamination of the styrene derivates proceeded via the amino-Ni(II)/LA attacking the carbocation intermediate which was generated by the protonation of the olefin, whereas for acrylonitrile and acrylates, it proceeded by a direct amino-Ni(II)/LA attack on the olefin by nucleophilic addition. In addition, the hydroarylation product was generated by the Hofmann-Martius rearrangement of the hydroamination product.

2.
J Org Chem ; 87(24): 16592-16603, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433901

RESUMO

Direct C-H activation and functionalization offer a convenient protocol for pharmaceutical and material syntheses. Although versatile mechanisms have been proposed to depict transition-metal-catalyzed C-H activation, to date, the shared key agostic hydrogen intermediate in several major mechanisms has not been observed yet, which apparently puzzles the mechanism-based catalyst design. This work reports the direct observations of this intermediate in Pd(II)/Sc(III)-catalyzed C-H activation of acetanilides, and its stability and reactivity in C-H activation are investigated. Remarkably, this intermediate is only observed in electron-rich acetanilides, and the meta-substituent with increased σm constant generally accelerates C-H activation, a characteristic of the base-assisted C-H activation mechanism. This study has unveiled the masks of this intermediate with an understanding of its first-hand physicochemical properties, shedding new light on mechanism-based catalyst design.

3.
J Org Chem ; 87(21): 13919-13934, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36205496

RESUMO

Transition-metal ion catalyzed intramolecular dual C-H activation to construct polycyclic heteroarene skeletons is merited for its step and atom-economic advantages in organic synthesis. However, in most cases, stoichiometric oxidants, elevated temperature, and other harsh conditions were commonly faced for this reaction, which apparently block the synthetic applications. Herein, we report a Pd(II)/LA (LA: Lewis acid) catalyzed intramolecular dual C-H activation to construct indoloquinolinone derivatives under mild conditions with dioxygen as the sole oxidant. It was found that adding LA such as Sc3+ to Pd(OAc)2 sharply improved its catalytic efficiency, whereas Pd(OAc)2 alone was very sluggish. The activity improvement was attributed to the linkage of the Sc3+ cation to the Pd(II) species through a diacetate bridge that significantly enhanced the electrophilic properties of Pd(II) for dual C-H activation.

4.
J Org Chem ; 87(7): 4524-4537, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306815

RESUMO

The present work introduces Pd(II)/LA-catalyzed (LA: Lewis acid) olefination of arylacetamides with dioxygen as the oxidant source. This protocol tolerates with different functional groups on the substrates, and the catalytic efficiency is highly Lewis acidity-dependent on added LA, that is, a stronger LA provided a better promotional effect. The 1H NMR studies of the semireaction between the arylacetamide and the Pd(II)/Sc(III) catalyst in HOAc-d4 disclosed the formation of a palladacycle intermediate, and the C-H activation step was reversible, which led to the formation of the deuterated arylacetamide substrate and the palladacycle intermediate. Further semireaction between the palladacycle intermediate and the olefin disclosed that it was a clean and much faster reaction than the C-H activation step, thus revealing multiple mechanistic information for Pd(II)-catalyzed C-H activation.

5.
Org Biomol Chem ; 20(7): 1425-1435, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080233

RESUMO

Transition metal ion catalyzed indole olefination through C-H activation is a convenient protocol to synthesize versatile bioactive vinylindole compounds; however, in most cases, stoichiometric amounts of oxidants were necessary to accomplish the catalytic cycle. The present study describes a Pd(II)/LA (LA: Lewis acid) catalyzed indole olefination with dioxygen as the sole oxidant. The olefination reaction with electron-rich olefins proceeded smoothly through the pyrrolyl N-carboxamide group directed remote C-H activation at the C3 position of the indole with the Pd(II)/LA catalyst, whereas Pd(II) alone was a very sluggish catalyst under identical conditions. For the electron-deficient olefins, the directing N-carboxamide group was not essential for olefination with this Pd(II)/LA catalyst, demonstrating a different olefination pathway from that of electron-rich olefins. Remarkably, 1H NMR kinetics disclosed that olefination proceeded much faster with electron-rich olefins than with electron-deficient ones.

6.
Front Artif Intell ; 4: 659060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179768

RESUMO

Compute-in-memory (CIM) is an attractive solution to process the extensive workloads of multiply-and-accumulate (MAC) operations in deep neural network (DNN) hardware accelerators. A simulator with options of various mainstream and emerging memory technologies, architectures, and networks can be a great convenience for fast early-stage design space exploration of CIM hardware accelerators. DNN+NeuroSim is an integrated benchmark framework supporting flexible and hierarchical CIM array design options from a device level, to a circuit level and up to an algorithm level. In this study, we validate and calibrate the prediction of NeuroSim against a 40-nm RRAM-based CIM macro post-layout simulations. First, the parameters of a memory device and CMOS transistor are extracted from the foundry's process design kit (PDK) and employed in the NeuroSim settings; the peripheral modules and operating dataflow are also configured to be the same as the actual chip implementation. Next, the area, critical path, and energy consumption values from the SPICE simulations at the module level are compared with those from NeuroSim. Some adjustment factors are introduced to account for transistor sizing and wiring area in the layout, gate switching activity, post-layout performance drop, etc. We show that the prediction from NeuroSim is precise with chip-level error under 1% after the calibration. Finally, the system-level performance benchmark is conducted with various device technologies and compared with the results before the validation. The general conclusions stay the same after the validation, but the performance degrades slightly due to the post-layout calibration.

7.
J Org Chem ; 86(12): 8333-8350, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056902

RESUMO

Exploring new protocols for efficient organic synthesis is crucial for pharmaceutical developments. The present work introduces a Pd(II)/LA-catalyzed (LA: Lewis acid) decarboxylative addition reaction for the synthesis of bis(indolyl)methane derivatives. The presence of Lewis acid such as Sc(OTf)3 triggered Pd(II)-catalyzed decarboxylative addition of propiolic acids with indoles to offer the bis(indolyl)methane derivatives in moderate to good yields, whereas neither Pd(II) nor Lewis acid alone was active for this synthesis. The catalytic efficiency of Pd(OAc)2 was highly dependent on the Lewis acidity of the added Lewis acid, that is, a stronger Lewis acid provided a higher yield of the bis(indolyl)methane derivatives. Meanwhile, this Pd(II)/LA-catalyzed decarboxylative addition reaction showed good tolerance toward versatile electron-rich or -deficient substituents on the indole skeleton and on the benzyl ring of propiolic acids. The studies on the in situ 1H NMR kinetics of this Pd(II)/Sc(III) catalysis disclosed the formation of a transient vinyl-Pd(II)/Sc(III) intermediate generated by the pyrrole addition to the alkynyl-Pd(II)/Sc(III) species after decarboxylation, which was scarcely observed before.


Assuntos
Indóis , Metano , Catálise , Elétrons , Ácidos de Lewis
8.
J Org Chem ; 85(14): 8760-8772, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32589028

RESUMO

Although Pd(II)-catalyzed C-H activation in arenes has been widely successful in organic synthesis with many palladacycle compounds isolated as the intermediates in ligand-directed C-H activation, direct identification of the reaction intermediates such as the π-complex prior to the C-H activation is still not successful because of their instability. In the present study, we introduce a Pd(II)/LA (LA: Lewis acid)-catalyzed oxidative olefination/annulation reaction between N-methoxybenzamides and acrylates with oxygen as the oxidant source, in which two intermediates, including an unsymmetrical η6-complex and a palladacycle species without the proton releasing to the environment, were identified through NMR characterizations. The in situ formation of the heterobimetallic Pd(II)/LA species such as Pd(II)/Sc(III) may have enhanced the electrophilic properties of the Pd2+ cation, thus improving the stability of the π-complex, herein, an unsymmetrical η6-complex, and improving its catalytic efficiency. The observed insensitive electronic effect preferred the concerted metalation-deprotonation (CMD) mechanism for this C-H activation, and the detected palladacycle intermediate without the proton releasing to the environment offered an experimental clue to support the proposed CMD mechanism.

9.
Med Chem ; 16(4): 555-562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31309896

RESUMO

BACKGROUND: Histone deacetylases inhibitors (HDACIs) with different chemical structures have been reported to play an important role in the treatment of cancer. OBJECTIVE: The study aims to modify the structure of Entinostat (MS-275) to discover new compounds with improved anti-proliferative activities and perform SAR studies on this class of bioactive compounds. METHODS: Fourteen N-substituted benzamide derivatives were synthesized and their antiproliferative activities were tested with four cancer cell lines (MCF-7, A549, K562 and MDA-MB- 231) by MTT assay. RESULTS: Compared with MS-275, six compounds exhibited comparable or even better antiproliferative activities against specific/certain cancer cell lines. CONCLUSION: The preliminary SARs showed that (ⅰ) the 2-substituent of the phenyl ring in the R group and heteroatoms of amide which can chelate with zinc ion are critical to the antiproliferative activity and (ⅱ) chlorine atom or nitro-group on the same benzene ring largely decreases their anti-proliferative activity. Molecular docking study illustrated the interaction (binding affinity) between the synthesized compounds and HDAC2 was observed to be similar to that of MS-275.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzamidas/síntese química , Benzamidas/farmacologia , Nitrogênio/química , Antineoplásicos/química , Benzamidas/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Relação Estrutura-Atividade
10.
Virol J ; 16(1): 123, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665045

RESUMO

BACKGROUND: Human papillomavirus (HPV) is one of the most common sexually transmitted viruses. Data about HPV infection in Guizhou is limited. METHODS: 56,768 cervical samples were collected and genotyped for 15 main high risk and 6 main low risk HPV types. RESULTS: 16.95% (9623/56768) of samples were HPV positive; 90.70% (8728/9623) of HPV positive women were infected by high risk HPV. High risk and high risk mix infection (1458; 70.85%) was the most common mix HPV infection type. The highest HPV detection rate was found in age group 41-45 years old (detection rate = 17.89%) (χ2 = 204.77; P < 0.001); the highest within-group HPV infection rates were found in the ≤20 (25.62%) and ≥ 61 (24.67%) years old age groups, the lowest within-group HPV infection rate was found in the 31-35 years old age group (15.02%). The highest mix infection proportions were found in the ≥61 (36.06%) and ≤ 20 (33.63%) years old age groups (χ2 = 111.21; P < 0.001), the lowest mix infection proportion was found in the 41-45 (17.42%) years old age group. The highest high risk infection proportions were found in the 26-30 (92.98%), ≥61 (92.68%), and 36-40 (92.16%) years old age groups (χ2 = 31.72; P < 0.001), the lowest high risk infection proportion was found in the ≤20 (84.96%) years old age group. HPV infection rates varied with seasons in Guizhou. CONCLUSIONS: Characteristics of HPV distribution in Guizhou were identified. There were significant differences in HPV distribution among age groups, prevention strategies should be adjusted according to the characteristics.


Assuntos
Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Adolescente , Adulto , Distribuição por Idade , Fatores Etários , Idoso , Colo do Útero/virologia , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/virologia , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Papillomaviridae/classificação , Papillomaviridae/genética , Prevalência , Estações do Ano , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...