Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(49): 47123-47133, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107925

RESUMO

Multidrug-resistant bacterial infections, especially those caused by multidrug-resistant Escherichia coli (E. coli) bacteria, are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Therefore, it is urgently needed to develop a kind of novel, long-term antibacterial agent effectively overcome resistant bacteria. Herein, we present a novel designed antibacterial agent-6-Aza-2-thiothymine-capped gold nanoclusters (ATT-AuNCs), which show excellent antibacterial activity against multidrug-resistant E. coli bacteria. The prepared AuNCs could permeabilize into the bacterial cell membrane via binding with a bivalent cation (e.g., Ca2+), followed by the generation of reactive oxygen species (e.g., •OH and •O2-), ultimately resulting in protein leakage from compromised cell membranes, inducing DNA damage and upregulating pro-oxidative genes intracellular. The AuNCs also speed up the wound healing process without noticeable hemolytic activity or cytotoxicity to erythrocytes and mammalian tissue. Altogether, the results indicate the great promise of ATT-AuNCs for treating multidrug-resistant E. coli bacterial infection.

2.
Colloids Surf B Biointerfaces ; 226: 113336, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167770

RESUMO

The use of conventional antibiotic therapies is in question owing to the emergence of drug-resistant pathogenic bacteria. Therefore, novel, highly efficient antibacterial agents to effectively overcome resistant bacteria are urgently needed. Accordingly, in this work, we described a novel class luminogen of 6-Aza-2-thiothymine-decorated gold nanoclusters (ATT-AuNCs) with aggregation-induced emission property that possessed potent antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Scanning electron microscopy was performed to investigate the interactions between ATT-AuNCs and MRSA. In addition, ATT-AuNCs exhibited excellent ROS generation efficiency and could effectively ablate MRSA via their internalization to the cells. Finally, tandem mass tag-labeling proteome analysis was carried out to investigate the differential expression proteins in MRSA strains. The results suggested that ATT-AuNCs killed MRSA cells through altering the expression of multiple target proteins involved in DNA replication, aminoacyl-tRNA synthesis, peptidoglycan and arginine biosynthesis metabolism. Parallel reaction monitoring technique was further used for the validation of these proteome results. ATT-AuNCs could also be served as a wound-healing agent and accelerate the healing process. Overall, we proposed ATT-AuNCs could serve as a robust antimicrobial aggregation-induced emission luminogen (AIEgen) that shows the ability to alter the activities of multiple targets for the elimination of drug-resistant bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Ouro/farmacologia , Proteoma , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...