Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38411935

RESUMO

Hyaluronate lyase (HA lyase) has potential in the industrial processing of hyaluronan. In this study, HylP, an HA lyase from Streptococcus pyogenes phage (SPB) was successfully expressed in Bacillus subtilis. To improve the extracellular enzyme activity of HylP in B. subtilis, signal peptide engineering systematic optimization was carried out, and cultured it from shake flasks and fermenters, followed by purification, characterization, and analysis of degradation products. The results showed that the replacement of the signal peptide increased the extracellular enzyme activity of HylP from 1.0 × 104 U/mL to 1.86 × 104 U/mL in the shake flask assay, and using a 20 L fermenter in a batch fermentation process, the extracellular enzyme activity achieved the level of 1.07 × 105 U/mL. HylP exhibited significant thermal and pH stability in the temperature range of 40 °C and pH range of 4-8, respectively. The enzyme showed optimum activity at 40 °C and pH 6, with significant activity in the presence of Na+, Mg2+, and Co2+ ions. Degradation analysis showed that HylP efficiently degraded hyaluronan as an endonuclease, releasing unsaturated disaccharides. These comprehensive findings underscore the substantial industrial potential of HylP for hyaluronan processing applications, offering valuable insights into enzyme characterization and optimization of expression for potential industrial utilization.

2.
Appl Microbiol Biotechnol ; 108(1): 54, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175240

RESUMO

Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.


Assuntos
Hialuronoglucosaminidase , Resposta a Proteínas não Dobradas , Animais , Humanos , Hialuronoglucosaminidase/genética , Transporte Proteico , Retículo Endoplasmático
3.
Carbohydr Polym ; 312: 120809, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059520

RESUMO

This study reveals the genetic and biochemical changes underlying the enhanced hyaluronan (HA) biosynthesis in Streptococcus zooepidemicus. After multiple rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with novel bovine serum albumin/cetyltrimethylammonium bromide coupled high-throughput screening assay, the HA yield of the mutant was increased by 42.9% and reached 0.813 g L-1 with a molecular weight of 0.54 × 106 Da within 18 h by shaking flask culture. HA production was increased to 4.56 g L-1 by batch culture in 5-L fermenter. Transcriptome sequencing exhibits that distinct mutants have similar genetic changes. Regulation in direction of metabolic flow into the HA biosynthesis, by enhancing genes responsible for the biosynthesis of HA including hasB, glmU and glmM, weaking downstream gene (nagA and nagB) of UDP-GlcNAc and significantly down-regulating transcription of wall-synthesizing genes, resulting in the accumulation of precursors (UDP-GlcA and UDP-GlcNAc) increased by 39.74% and 119.22%, respectively. These associated regulatory genes may provide control point for engineering of the efficient HA-producing cell factory.


Assuntos
Ácido Hialurônico , Streptococcus equi , Ácido Hialurônico/química , Temperatura , Streptococcus equi/genética , Streptococcus equi/metabolismo , Difosfato de Uridina/metabolismo , Variação Genética
4.
J Biotechnol ; 366: 35-45, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36925048

RESUMO

Hyaluronate lyases (HA lyases) have been proved to distribute widely among microorganisms, with large potential in hyaluronan processing. Here, a highly active HA lyase HylC from Citrobacter freundii strain Cf1 is reported. HylC was expressed in Escherichia coli BL21(DE3) under the regulation of T7 promoter, and purified to electrophoretic homogeneity for enzymatic characterization, which suggested its suitable thermo- and pH stability under 45 °C and pH rang of 4-8, and high halotolerancy in 1.5 M NaCl. The enzyme exhibited the optimal activity under 37 °C and pH 5.5, and was activated by Ca2+, K+, Zn2+, Ni2+ and Li+. Analysis of degradation product proved it cleave HA in endolytic manner, releasing unsaturated disaccharides as final product. Then, through optimization of promoter and construction of dual promoter, expression level of HylC improved from 1.10 × 104 U/mL to 2.64 × 104 U/mL on shake-flask level. Finally, through batch fermentation, a highest activity of 2.65×105 U/mL was achieved in a 5-L fermenter. Taken together, this work demonstrates the potential of HylC and its recombinant strain in industrial applications. To our knowledge, the HA lyase production reported in this study was the highest level in literatures to date.


Assuntos
Ácido Hialurônico , Oligossacarídeos , Ácido Hialurônico/química , Oligossacarídeos/metabolismo , Dissacarídeos/metabolismo , Polissacarídeo-Liases/química , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Biotechnol Adv ; 60: 108018, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35853550

RESUMO

It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.


Assuntos
Ácido Hialurônico , Hialuronoglucosaminidase , Animais , Biotecnologia , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Mamíferos
6.
J Environ Manage ; 302(Pt B): 114087, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34773780

RESUMO

Polymer materials have become one of the potential materials for remediation of heavy metal (HM) contamination in water and soil. However, the specific advantages of polymers are rarely studied. Water-soluble thiourea formaldehyde resin (WTF) is one of the effective polymer amendments. Through leaching experiments, WTF can stabilize 93.0% of Cd2+ and 99.7% of Cu2+. The results of HM morphology analysis show that after adding WTF, most of the HMs have been transformed into a relatively stable state. For example, in the process of remediation of 6 mg/kg Cd contaminated soil, the proportion of acid-soluble Cd decreased from 56.5% to 12.8%, and the residual state increased from 13.5% to 45.4%. Compared with the resin-free structure, the three-dimensional structure of the resin plays an important role, but the efficiency of precipitation with HMs is doubled. According to the simulation of the adsorption process by Materials Studio, the characterization of the scanning electron microscope-energy dispersive instrument and the results of the adsorption experiment, in the solution, the precipitate formed by WTF and Cd2+ has multilayer adsorption of HMs, and can further adsorb HM by -OH. Soil enzyme activity experiments proved that the risk of secondary pollution by adding WTF is rare, and even WTF can achieve the effect of slow-release nitrogen fertilizer. In the WTF remediation process, the biological toxicity reduction of HMs is result from, on the one hand, the complexation of functional group of WTF; on the other hand, the resin structure of WTF; in addition, multi-layer adsorption and adsorption of end groups in the precipitation formed by WTF and HM. This work provides a theoretical basis for the potential capabilities of water-soluble resins and is beneficial to the design and development of subsequent amendments.


Assuntos
Metais Pesados , Poluentes do Solo , Adsorção , Cádmio/análise , Metais Pesados/análise , Polímeros , Solo , Poluentes do Solo/análise , Água
7.
Curr Med Sci ; 40(3): 474-479, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32681252

RESUMO

Studies on the integration of cross-modal information with taste perception has been mostly limited to uni-modal level. The cross-modal sensory interaction and the neural network of information processing and its control were not fully explored and the mechanisms remain poorly understood. This mini review investigated the impact of uni-modal and multi-modal information on the taste perception, from the perspective of cognitive status, such as emotion, expectation and attention, and discussed the hypothesis that the cognitive status is the key step for visual sense to exert influence on taste. This work may help researchers better understand the mechanism of cross-modal information processing and further develop neutrally-based artificial intelligent (AI) system.


Assuntos
Percepção Gustatória/fisiologia , Paladar/fisiologia , Inteligência Artificial , Cognição/fisiologia , Humanos
8.
J Hazard Mater ; 346: 167-173, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29274510

RESUMO

Stabilization/Solidification (S/S) can be regarded as necessary for remediation of heavy metal contaminated soil. There is, however, solid agent is not very convenient to use. Water-soluble thiourea-formaldehyde (WTF) is a novel chelating agent, which has more practical applications. The process of WTF resin for S/S process of heavy metal contaminated soils was studied. Laboratory-prepared slurries, made of field soils spiked with Cd2+ and Cr6+ were treated with WTF resin. The toxicity characteristic leaching procedure (TCLP) showed that with 2 wt% WTF, in the neutral condition of soil after treatment for 7 d, the leaching concentrations of Cd2+ and Cr6+ in contaminated soil were decreased by 80.3% and 92.6% respectively. Moreover, Tessier sequence extraction procedure showed WTF resin reduced the leaching concentration by transforming heavy metal from exchange form to organic form. The structure of WTF is obtained according to elemental analysis result and reaction mechanism. Through analysis of the infrared spectrogram of WTF and WTF heavy mental chelating precipitation, WTF can form stable chelate with heavy mental through coordination. The significant groups are hydroxyl, nitrogen and sulphur function groups in WTF mainly. Toxicology test revealed that the WTF resin is nontoxic to microorganism in the soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...