Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(10): 9893-9902, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35715606

RESUMO

Specificity protein (Sp) is a famous family of transcription factors including Sp1, Sp2 and Sp3. Sp1 is the first one of Sp family proteins to be characterized and cloned in mammalian. It has been proposed that Sp1 acts as a modulator of the expression of target gene through interacting with a series of proteins, especially with transcriptional factors, and thereby contributes to the regulation of diverse biological processes. Notably, growing evidence indicates that Sp1 is involved in the main events in the development of atherosclerosis (AS), such as inflammation, lipid metabolism, plaque stability, vascular smooth muscle cells (VSMCs) proliferation and endothelial dysfunction. This review is designed to provide useful clues to further understanding roles of Sp1 in the pathogenesis of AS, and may be helpful for the design of novel efficacious therapeutics agents targeting Sp1.


Assuntos
Aterosclerose , Fator de Transcrição Sp1 , Animais , Aterosclerose/genética , Humanos , Mamíferos/metabolismo , Regiões Promotoras Genéticas , Proteínas/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
2.
Clin Chim Acta ; 522: 158-166, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34425103

RESUMO

Irisin, a novel exercise-induced myokine, has been shown to play important roles in increasing white adipose tissue browning, regulating energy metabolism and improving insulin resistance. Growing evidence suggests a direct role for irisin in preventing atherosclerosis (AS) by inhibiting oxidative stress, improving dyslipidemia, facilitating anti-inflammation, reducing cellular damage and recovering endothelial function. In addition, some studies have noted that serum irisin levels play an essential role in cardiovascular diseases (CVDs) risk prediction, highlighting that irisin has the potential to be a useful predictive marker and therapeutic target of AS, especially in monitoring therapeutic efficacy. This review summarizes the understanding of irisin-mediated regulation in essential biological pathways and functions in atherosclerosis and prompts further exploitation of the biological properties of irisin in the pathogenesis of atherosclerosis.


Assuntos
Aterosclerose , Resistência à Insulina , Anti-Inflamatórios , Metabolismo Energético , Fibronectinas , Humanos
3.
Clin Chim Acta ; 521: 19-24, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34153276

RESUMO

Atherosclerosis, as a chronic inflammatory disease within the arterial wall, is a leading cause of morbidity and mortality worldwide due to its role in myocardial infarction, stroke and peripheral artery disease. Additional evidence is emerging that the angiopoietin-like (ANGPTL) family of proteins participate in the pathology of this disease process via endothelial dysfunction, inflammation, dyslipidemia, calcification, foam cell formation and platelet activation. This review summarizes current knowledge on the ANGPTL family of proteins in atherosclerosis related pathological processes. Moreover, the potential value of ANGPTL family proteins as predictive biomarkers in atherosclerosis is discussed. Given the attractive role of ANGPTL3, ANGPTL4, ANGPTL8 in atherosclerotic dyslipidemia via regulation of lipoprotein lipase (LPL), antisense oligonucleotide or/and monoclonal antibody-based inactivation of these proteins represent potential atherosclerotic therapies.


Assuntos
Aterosclerose , Dislipidemias , Hormônios Peptídicos , Proteína 3 Semelhante a Angiopoietina , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Biomarcadores , Humanos , Lipase Lipoproteica
4.
Clin Chim Acta ; 520: 8-15, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34022243

RESUMO

Atherosclerosis (AS), a chronic arterial disease, is characterized by endothelial dysfunction, inflammatory reactions and lipid accumulation in parallel with aberrant angiogenesis and vascular smooth muscle cell (VSMC) proliferation. Adipose tissue has been suggested to have an integral influence on metabolism and endocrine secretion, while there have been increasing concerns about the possible involvement of adipokines in cardiovascular diseases, including AS. Here, we focused on chemerin, an adipokine highly expressed in adipose tissue, with strong evidence of an association with inflammation, endothelial dysfunction, metabolic disorder, aberrant angiogenesis, VSMC proliferation and calcification. In this review, we discuss chemerin and its receptors in the pathogenesis of AS. However, the existing data assign various, even contradictory, roles to chemerin in atherosclerosis, such as inhibiting vascular calcification and impairing endothelial function. Current studies focusing on its anti- and pro-atherogenic effects have pinpointed its distinct role in specific cell types and contexts in the pathogenesis of atherosclerosis. Therefore, the gaps in current knowledge regarding the specific role played by chemerin in the etiology of AS require additional future studies. It seems reasonable to suggest that targeted chemerin therapy can be developed as an innovative approach for treating AS.


Assuntos
Aterosclerose , Quimiocinas , Adipocinas , Tecido Adiposo , Humanos , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...