Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308352, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433397

RESUMO

Magnetic hydrogel actuators are developed by incorporating magnetic fillers into the hydrogel matrix. Regulating the distribution of these fillers is key to the exhibited functionalities but is still challenging. Here a facile way to spatially synthesize ferrosoferric oxide (Fe3 O4 ) microparticles in situ in a thermal-responsive hydrogel is reported. This method involves the photo-reduction of Fe3+ ions coordinated with carboxylate groups in polymer chains, and the hydrolytic reaction of the reduced Fe2+ ions with residual Fe3+ ions. By controlling the irradiation time and position, the concentration of Fe3 O4 microparticles can be spatially controlled, and the resulting Fe3 O4 pattern enables the hydrogel to exhibit complex locomotion driven by magnet, temperature, and NIR light. This method is convenient and extendable to other hydrogel systems to realize more complicated magneto-responsive functionalities.

2.
ACS Appl Mater Interfaces ; 16(7): 9286-9292, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323411

RESUMO

Conjugated polymers are commonly adopted to develop electro- and photoresponsive materials due to their superior electronic conductivity and phototothermal convertibility. However, they are usually homogeneously polymerized within the network, which makes their functionalities challenging to spatiotemporally modulate. In this work, we report a convenient and extensible method to develop polypyrrole patterns in a thermally responsive sodium alginate/poly(N-isopropylacrylamide) hydrogel. The polypyrrole pattern is developed by spatial photoreduction of Fe3+ ions into Fe2+ ions and subsequently initiating oxidation polymerization of pyrrole by the residual Fe3+ ions. During this process, carboxylate groups coordinated with Fe3+ ions are also sacrificed in a gradient manner along the thickness direction, and the resulting concentration gradients of the carboxylate group endow the hydrogel with thermal-responsive actuation. The polymerized polypyrrole also renders the hydrogels' prominent temperature-rising behaviors upon NIR light irradiation. By designing the PPy pattern, hydrogels can exhibit versatile actuating behaviors and execute mechanical works such as lifting objects. This method is convenient and can be extended to develop other conjugated polymers in hydrogel systems for versatile applications.

3.
ACS Appl Mater Interfaces ; 15(44): 51846-51853, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874133

RESUMO

The shapes of rubbers and elastomers are challenging to alter, and current methods relying on permanent plasticity and dynamic cross-linking strategies are usually laborious and can inevitably compromise the network elasticity. Here, we report a photoresponsive elastic composite that can be programmed into 3D shapes by first UV light irradiation and then stretching. The composite comprises ethylene propylene rubber as the elastic substrate and photoliquefiable azobenzene small molecules as the responsive filler. Upon UV light irradiation, the liquefication of the filler induces the destruction of the crystalline aggregates near the irradiated surface, and after stretching and subsequent stress release, the irradiated part bends to the irradiated side based on a gradient network orientation mechanism. The position and amplitude of bending deformation can be controlled to realize a 2D-to-3D shape transformation. We further show that the resulting 3D-shaped elastomer can integrate with silver conductive paste to develop soft conductive lines with tailorable strain-sensitive conductivities. This study may open a new door for the development of shape-tailorable elastomers and soft electronics with designable strain-sensitive conductivities.

4.
ACS Appl Mater Interfaces ; 15(34): 40991-40999, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37596968

RESUMO

Polymeric materials that can actuate under the stimulation of environmental signals have attracted considerable attention in fields including artificial muscles, soft robotics, implantable devices, etc. To date, the improvement of shape-changing flexibility is mainly limited by their unchangeable shapes and structural and compositional distributions. In this work, we report a one-step treatment process to convert 2D poly(ethylene oxide)/sodium alginate/tannic acid thin films into 3D-shaped moisture- and NIR light-responsive actuators. Spatial surface wetting of the film leads to the release of residual stress generated in film formation in a gradient manner, which drives the wetted regions to bidirectionally bend. By controlling the position and bending amplitude of the wetted regions, designated 3D shapes can be obtained. Moreover, Fe3+ ions in the aqueous solution used for surface wetting can coordinate with carboxylate groups in sodium alginate chains to form a gradient cross-linking network. This gradient network can not only stabilize the resulting 3D shape but also render the film with moisture-responsive morphing behaviors. Fe3+ ions can also self-assemble with tannic acid molecules to form photothermal aggregates, making the film responsive to NIR light. We further show that films with versatile 3D shapes and different modes of deformation can be fabricated by a one-step treatment process. This strategy is convenient and extendable to develop 3D-shaped polymer actuators with flexible shape-changing behaviors.

5.
Angew Chem Int Ed Engl ; 62(23): e202302900, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040375

RESUMO

Poly(acrylic acid-co-N-vinylcaprolactam) (PAN) hydrogels containing multiple hydrogen bonds can exhibit pH-induced reversible dynamic responsive behaviors. When placing a transparent hydrogel in an acid bath, as hydrogen bonds between comonomer units involving protonated COOH groups are formed faster than water diffusion, a nonequilibrium light-scattering state is formed to turn the hydrogel opaque, while as the swelling equilibrium is reached over time, the hydrogel regains its transparency. Likewise, when the transparent, hydrogen-bonded hydrogel is subsequently immersed in DI water, faster water absorption occurs in where more COOH groups are deprotonated, which also generates a light-scattering state leading to opacity, while the transparency is slowly recovered after equilibrium. Using such two-way dynamic transparency evolution, a PAN-based hydrogel material is prepared to demonstrate a dynamic memory system for information memorizing-forgetting and recalling-forgetting.

6.
Macromol Rapid Commun ; 44(4): e2200705, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461768

RESUMO

Hydrogel shape memory and actuating functionalities are heavily pursued and have found great potential in various application fields. However, their combination for more flexible and complicated morphing behaviors is still challenging. Herein, it is reported that by controlling the light-initiated polymerization of active hydrogel layers on shape memory hydrogel substrates, advanced morphing behaviors based on programmable hydrogel shapes and actuating trajectories are realized. The formation and photo-reduction-induced dissociation of Fe3+ -carboxylate coordination endow the hydrogel substrates with the shape memory functionality. The photo-reduced Fe2+ ions can diffuse from the substrates into the monomer solutions to initiate the polymerization of the thermally responsive active layers, whose actuating temperatures and amplitudes can be facially tuned by controlling their thicknesses and compositions. One potential application, a shape-programmable 3D hook that can lift an object with a specific shape, is also unveiled. The demonstrated strategy is extendable to other hydrogel systems to realize more versatile and complicated actuating behaviors.


Assuntos
Ácidos Carboxílicos , Hidrogéis , Hidrogéis/química , Temperatura , Polimerização , Íons
7.
ACS Appl Mater Interfaces ; 14(45): 51244-51252, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36397310

RESUMO

Thermal-responsive hydrogel actuators have aroused a wide scope of research interest and have been extensively studied. However, their actuating behaviors are usually monotonous due to their unchangeable shapes and structures. Here, we report thermal-responsive poly(isopropylacrylamide-co-2-(dimethylamino)ethyl methacrylate)/alginate hydrogels with programmable external shapes and internal actuating trajectories. The volume phase transition temperatures of the resulting hydrogels can be tuned in a wide temperature range from 32 to above 50 °C by adjusting the monomer composition. While the formation and photo-dissociation of Fe3+-carboxylate tri-coordinates within the entire hydrogel network enable photo-responsive shape memory property, the insufficient dissociation of the tri-coordinates along the irradiation path gives rise to gradient crosslinking for realizing thermal-responsive actuation. Controlling the evolution of the gradient structure facilitates the regulation of the actuating amplitude. Furthermore, we show that the combination of these two types of shape-changing functionalities leads to more flexible and intricate shape-changing behaviors. One interesting application, a programmable hook with changeable actuating behaviors for lifting different objects with specific shapes, is also demonstrated. The proposed strategy can be extended to other types of actuating hydrogels with more advanced actuating behaviors.

8.
ACS Appl Mater Interfaces ; 14(25): 29188-29196, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35709501

RESUMO

Hydrogel actuators have gained considerable interest and experienced significant advancements in recent years. However, the programming of their actuating behaviors is still challenging. Herein, we report the development and regulation of gradient structures of hydrogels for programmable thermally responsive actuating behaviors. The hydrogel actuators are developed by controlling the photoreduction of Fe3+ ions coordinated with carboxylate groups from the substrates and their limited diffusion into the precursor solutions to act as both initiators and crosslinkers. The developed hydrogels show well-defined external geometries and controllable thicknesses under spatiotemporal control of ultraviolet irradiation. The shapes and the actuation amplitudes of the hydrogel actuators can be independently regulated by controlling the formation and photodissociation of Fe3+-carboxylate coordination in the formed gradient networks. Some interesting applications such as the lifting of an object with a specific shape and directional walking are realized. The proposed method can be extended to other hydrogel actuators with different compositions and stimuli-responsive behaviors.

9.
ACS Appl Mater Interfaces ; 14(8): 10836-10843, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167262

RESUMO

Humidity-responsive polymeric actuators have gained considerable interest due to their great potential in the fields including soft robotics, artificial muscles, smart sensors, and actuators. However, most of them can only exhibit invariable shape changes, which severely restricts their further exploration and practical use. Herein, we report that programmable humidity-responsive actuating behaviors can be realized by introducing photoprogrammable hygroscopic patterns into shape memory polymers. Poly(ethylene-co-acrylic acid) is selected as a model polymer and the solvent-processed thin films are soft and elastic, whose external shapes can be programmed by a modified shape memory process. On another aspect, an Fe3+-carboxylate coordinating network formed by surface treatments can be spatially dissociated under UV, resulting in transient hygroscopic gradients as active joints for moisture-driven actuation. Moreover, we show that the shape memory effect can be an effective means to adjust the direction as well as the amplitude of the moisture-driven actuating behavior. The proposed strategy is convenient and can be generally extended to other shape memory polymers to realize programmable moisture-responsive actuating behaviors.

10.
ACS Appl Mater Interfaces ; 13(49): 59310-59319, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865479

RESUMO

An extendable double network design for hydrogels with programmable external geometries and actuating trajectories is presented. Chemically cross-linked polyacrylamide as the first network penetrated with linear alginate chains is prepared for demonstration. The coordination of Fe3+ ions with carboxylate groups in alginate chains acts as the second network, and its dissociation through photoreduction is utilized to realize the photoresponsive shape memory property; the shape fixity ratio and shape recovery ratio both exceed 90%. The gradient dissociation of Fe3+-carboxylate coordination under UV facilitates 3D programming of hydrogel geometry. On another aspect, the resulted cross-linking gradient differentiates the extent and rate of solvent-induced volume change of the PAAm network, endowing the hydrogel with photo-programmable solvent-driven actuating behavior. Furthermore, by inducing the formation of Fe3+-carboxylate coordination within the entire network for shape programming and cross-linking gradients in specific regions as active joints, hydrogels with designed actuating behaviors based on specific 3D shapes are realized. The shape memory and active morphing functionalities enabled by photo-dissociable Fe3+-carboxylate coordination in PAAm hydrogel can be generally extended to other hydrogels.

11.
Am J Transl Res ; 13(11): 12887-12896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956504

RESUMO

OBJECTIVE: To investigate the effects of laparoscopic radical surgery on the treatment of colorectal cancer (CRC) and explore the correlations of vascular endothelial growth factor (VEGF) and transforming growth factor-ß1 (TGF-ß1) with prognosis. METHODS: The clinical data of 210 patients with CRC admitted to the Yantai Zhifu Hospital from February 2015 to February 2018 were analyzed retrospectively. Among them, 110 patients were treated with laparoscopic radical surgery and assigned to the observation group, and the rest 100 patients were treated with routine open surgery and included in the open group. The two groups were compared in terms of operation time (OT), intraoperative blood loss (IBL), postoperative exhaust time (PET), length of hospital stays (LOS) and incidence of complications. Patients were also followed up for 3 years to count their survival rates. Serum expression levels of VEGF and TGF-ß1, detected by enzyme-linked immunosorbent assays (ELISAs), were compared before and after treatment, and their correlations with patients' clinicopathological data and prognosis were analyzed. RESULTS: Compared with the open group, patients in the observation group had longer OT, but lower IBL, PET, LOS, and overall incidence of complications. In the observation group, VEGF and TGF-ß1 expression after treatment was remarkably lower than that before treatment and that in the open group. A 3-year survival rate of 80.0% was observed in the observation group. Univariate analysis showed that serum VEGF and TGF-ß1 expression levels were closely related to Dukes staging and lymph node metastasis (LNM) (P<0.05). The Log-Rank test showed that the survival rate of patients with high VEGF and TGF-ß1 expression was remarkably lower than that of those with low expression (P<0.05). According to Cox model multivariate analysis, Dukes staging, LNM, surgical methods and high VEGF and TGF-ß1 expression were all independent risk factors for the prognosis of CRC patients (P<0.05). CONCLUSION: Laparoscopic radical surgery is effective and safe in treating CRC. VEGF and TGF-ß1 are highly expressed in the serum of CRC patients, and are closely related to the tumor staging, LNM and prognosis of patients, which are of great significance for evaluating the condition and prognosis of CRC patients.

12.
ACS Appl Mater Interfaces ; 13(32): 38773-38782, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34369771

RESUMO

Most humidity-responsive polymeric actuators can only exhibit shape transformations between a planar shape in the dry state and a bended three-dimensional (3D) shape when exposed to moisture, and it is challenging to design and prepare hygroscopic actuators with programmable actuating behaviors displayed from sophisticated 3D structures. Herein, we demonstrate that the integration of shape memory property and surface treatment enabled hygromorphic responsivity endows a single-component polymer film with programmable moisture-driven actuating behaviors. The solvent-processed polyethylene-co-acrylic acid (EAA) copolymer film is soft and stretchable at room temperature, and has a good thermal-responsive shape memory property. By surface treatment using base/acid solutions, the reversible gradient conversion between carboxyl groups and carboxylate salts along the thickness direction enables the film to exhibit designed hygroscopic actuations. The shape memory property and moisture-driven actuating behaviors can be combined to realize 3D-3D morphing by first programming the films into 3D shapes and then conducting the surface treatments. Both shape programming and surface treatment processes can be reprogrammed to make the actuation behavior readily tunable. We also show that the created surface patterns can act as moisture-sensitive conducting paths to detect human breathes, and the combination of shape memory, moisture-responsive morphing and conductivity change leads to some interesting applications such as smart switch in conducting circuit. This work provides a new and general strategy for the design of advanced humidity-responsive actuators.

13.
Chem Commun (Camb) ; 56(81): 12246-12249, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-32929426

RESUMO

Reactive oxygen species (ROS)-responsive prodrug nanoplatforms may not work efficiently due to insufficient ROS concentrations, so therapeutic polymersomes of a metallisable triamine-centered iminoboronate-functionalized amphiphilic starlike prodrug (N3-(OEG-IBCAPE)4) are prepared to show a Cu(ii)-mediated Fenton reaction-enhanced ROS response.


Assuntos
Ácidos Borônicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Polímeros/farmacologia , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácidos Borônicos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Células Hep G2 , Humanos , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química , Pró-Fármacos/síntese química , Pró-Fármacos/química
14.
Polymers (Basel) ; 12(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906565

RESUMO

High pressure in situ Fourier transfer infrared/near infrared technology (HP FTIR/NIR) along with theoretical calculation of density functional theory (DFT) method was employed. The solvation behaviors and the free radical homopolymerization of methyl methacrylate (MMA), methacrylate acid (MAA), trifluoromethyl methacrylate (MTFMA) and trifluoromethyl methacrylate acid (TFMAA) in scCO2 were systematically investigated. Interestingly, the previously proposed mechanism of intermolecular-interaction dynamically-induced solvation effect (IDISE) of monomer in scCO2 is expected to be well verified/corroborated in view that the predicted solubility order of the monomers in scCO2 via DFT calculation is ideally consistent with that observed via HP FTIR/NIR. It is shown that MMA and MAA can be easily polymerized, while the free radical polymerizability of MTFMA is considerably poor and TFMAA cannot be polymerized via the free radical initiators. The α trifluoromethyl group (-CF3) may effectively enhance the intermolecular hydrogen bonding and restrain the diffusion of the monomer in scCO2. More importantly, the strong electron-withdrawing inductive effect of -CF3 to C=C may distinctly decrease the atomic charge of the carbon atom in the methylene (=CH2). These two factors are believed to be predominantly responsible for the significant decline of the free radical polymerizability of MTFMA and the other alkyl 2-trifluoromethacrylates in scCO2.

15.
ACS Appl Mater Interfaces ; 12(5): 6407-6418, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31880155

RESUMO

A new design for photoresponsive shape memory hydrogels and their possible applications are demonstrated in the present study. We show that the photodissociable Fe3+-carboxylate coordination can be utilized as a molecular switch to realize photocontrol of shape memory on both macroscopic and microscopic scales and enable a number of functions. Indeed, Fe3+-carboxylate coordination can fix a large tensile strain (up to 680%) of the sodium alginate/polyacrylamide hydrogel through cross-linking of sodium alginate chains, and subsequent UV irradiation allows strain energy release in spatially selected regions through reduction of Fe3+ to Fe2+. By manipulating light irradiation, complex 3D structures are obtained from 2D hydrogel sheets, and they exhibit complex solvent-driven actuation behaviors due to a light-changeable modulus and cross-linking density in the hydrogel. Based on the same approach, micropatterns can be inscribed on the hydrogel surface using mask-assisted irradiation, and they exhibit chain orientation-mediated anisotropic topography change upon solvent exchange. Moreover, light-controlled strain energy release also enables changing hydrogel surface wettability by solvent replacement. The demonstrated mechanism for photoresponsive hydrogels is highly efficient and applicable to many systems, which offers new perspectives in developing hydrogels with multiple photoresponsive functions.

16.
ACS Appl Mater Interfaces ; 11(33): 30308-30316, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31337207

RESUMO

Shape transformation of polymeric materials, including hydrogels, liquid crystalline, and semicrystalline polymers, can be realized by exposing the shape-changing materials to the effect of a variety of stimuli such as temperature, light, pH, and magnetic and electric fields. Herein, we demonstrate a novel and different approach that allows a flat sheet or strip of a polymer to transform into a predesigned 3D shape or structure by simply stretching the polymer at room temperature and then releasing it from the external stress, that is, a 2D-to-3D shape change is activated by mechanical deformation under ambient conditions. This particular type of stimuli-controlled shape-changing polymers is based on suppressing plastic deformation in selected regions of the flat polymer sheet prior to stretching and release. We validated the design principle by using a polymer blend composed of poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and tannic acid (TA) whose plastic deformation can be locally inhibited by surface treatment using an aqueous solution of copper sulfate pentahydrate (Cu2+ ink) that cross-links PAA chains through a Cu2+-carboxylate coordination and, consequently, increases the material's Young's modulus and yield strength. After room temperature stretching and release, elastic deformation in the Cu2+ ink-treated regions leads to 3D shape transformation that is controlled by the patterned surface treatment. This facile and effective "stretch-and-release" approach widens the scope of preparation and application for shape-changing polymers.

17.
ACS Appl Mater Interfaces ; 10(46): 40189-40197, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30372013

RESUMO

Although shape-memory polymers (SMPs) can alter their shapes upon stimulation of environmental signals, complex shape transformations are usually realized by using advanced processing technologies (four-dimensional printing) and complicated polymer structure design or localized activation. Herein, we demonstrate that stepwise controlled complex shape transformations can be obtained from a single flat piece of SMP upon uniform heating. The shape-memory blends prepared by solution casting of poly(ethylene oxide) and poly(acrylic acid) (PAA) exhibit excellent mechanical and room-temperature shape-memory behaviors, with fracture strain beyond 800% and both shape memory and shape recovery ratio higher than 90%. After plastic deformation by stretching under ambient conditions, the material is surface-patterned to induce the formation of an Fe3+-coordinated PAA network with gradually altered cross-linking density along the thickness direction at desired areas. Upon subsequent heating for shape recovery, strain release is restricted by the PAA network to different extents depending on the cross-linking density, which results in bending deformation toward the nonpatterned side and leads to three-dimensional shape transformation of the SMP. More interestingly, by sequentially dissociating the PAA network via UV or visible light-induced photoreduction of Fe3+ to Fe2+, residual strains can be removed in a spatially controlled manner. Using this approach, a series of origami shapes are obtained from a single SMP with a tailored two-dimensional initial shape. We also demonstrate that by incorporating polydopamine nanoparticles as photothermal fillers into the material, the whole shape transformation process can be carried out at room temperature by using near-infrared light.

18.
Macromol Rapid Commun ; 39(11): e1800009, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29708286

RESUMO

An oligo(ethylene glycol)-based star polymer of N2 -(OEG-C)3 with fluorescent coumarin as hydrophobic end groups and dual tertiary amines as the star center is designed and synthesized. Owing to its amphiphilic nature of N2 -(OEG-C)3 , it will self-assemble into hollow vesicles with coumarin groups dispersed in the hydrophobic membrane and exhibits CO2 -responsive behavior due to the protonation of amine centers with CO2 . More importantly, coumarin moieties can either form non-crosslinking with γ-cyclodextrin via the 2/1 host-guest inclusion, or covalently photodimerized by 365 nm light, offering a tunable crosslinking pattern in the hydrophobic membrane and thus adjusting its CO2 -stimulated reorganization and disassembly behaviors of these vesicles in aqueous solution.


Assuntos
Dióxido de Carbono/química , Cumarínicos/química , Polietilenoglicóis/química , Polímeros/química , Aminas/química , Dimerização , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Luz , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência , Água/química , gama-Ciclodextrinas/química
19.
Macromol Rapid Commun ; 39(6): e1700684, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29297595

RESUMO

A novel hyperbranched lower critical solution temperature (LCST) polymer with sharp temperature and CO2 -responsive behaviors is presented in this study. The target polymer of hyperbranched poly(oligo(ethylene glycol) (HBPOEG) is constructed using POEG as the backbone and tertiary amines as branch points. Phase transition of HBPOEG in aqueous solution is investigated by heating and cooling the system; the results indicate that HBPOEG in aqueous solution has a concentration-dependent phase transition behavior with excellent repeatability. Moreover, LCST of HBPOEG can be tuned by bubbling CO2 into the solution, as the tertiary amines can be protonated and the solubility of the polymer would increase by bubbling CO2 into the system, leading to an increase of LCST of the polymer. Further bubbling N2 to remove CO2 can reversibly turn back the LCST to its original value. This backbone-based hyperbranched LCST polymer with both CO2 and temperature responsiveness can be applied in application areas like drug delivery, gene transfection, functional coatings, etc.


Assuntos
Polietilenoglicóis/química , Polímeros/química , Dióxido de Carbono/química , Interações Hidrofóbicas e Hidrofílicas , Temperatura
20.
J Mater Chem B ; 6(47): 7800-7804, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255025

RESUMO

Due to the very weak acidity of CO2 in water, it is highly interesting to fabricate CO2-responsive polymersomes which have both CO2-protonatable tertiary amines and CO2-hydrolyzable iminoboronate-linked drugs. Upon CO2 addition, amine protonation and iminoboronate hydrolysis simultaneously occur, leading to prominent vesicle disassembly and a tunable release feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...