Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1462: 73-9, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27495371

RESUMO

Hydrazine and acetohydrazide are potential genotoxins and therefore need to be controlled in APIs and drug products to ppm levels for patient safety in cases where there is a reasonable probability of either of them being present. They are structurally related and could both be formed in the same chemical process under certain circumstances. However, no previous studies have reported simultaneous trace level quantification of these two compounds. Herein, a chemical derivatization scheme using benzaldehyde followed by LC-MS analysis is presented to address that need. During method development, unexpectedly high recoveries were encountered and presented a major challenge. A systematic investigation was undertaken to understand the benzaldehyde derivatization reaction and determine the underlying causes of the unacceptable recovery. It was found that this was due to the presence of the counter ion of the API in the sample matrix. Employing a 'matrix matching' sample preparation strategy, which involved acidifying the derivatization reaction medium with benzoic acid, gave similar reaction rates for the chemical derivatization in the presence and absence of the API salt and accordingly more consistent recoveries. Resultantly, a robust method for simultaneous quantification of hydrazine and acetohydrazide (1-100ppm) was successfully developed and validated.


Assuntos
Benzaldeídos/química , Hidrazinas/análise , Preparações Farmacêuticas/química , Cromatografia Líquida , Espectrometria de Massas
2.
Regul Toxicol Pharmacol ; 58(2): 224-32, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20600453

RESUMO

The existing regulatory guidance for photosafety testing of new drug products states that studies are warranted for those chemicals that both absorb light in the range of 290-700 nm, and that are either applied locally/topically, or "reach" (EMEA)/"significantly partition" (FDA) to the skin or eyes. The initial in vitro study recommended for the assessment of phototoxic potential is the 3T3 Neutral Red Uptake (NRU) Assay. The current study was undertaken to establish superior triggers for the initiation of biological photosafety testing. In this study, photophysical and photochemical parameters for 40 drug or drug-like molecules were studied. Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and a fivefold cross-validation PLS algorithm were used to evaluate the relationship between subsets of photophysical and photochemical parameters with the 3T3 NRU PIF/MPE (Photo Irritation Factor/Mean Photo Effect) results. The parameters most indicative of a 3T3 NRU positive PIF or MPE score were the extent of degradation in solution, the quantum yield of formation of singlet oxygen and the relative formation of superoxide anion. The results demonstrate that while absorption of light is critical to the induction of a light-induced process, it is the resultant events that may be used to predict the 3T3 NRU assay result. It is therefore proposed that the trigger for photosafety testing be revised to include a molecular basis for photoreactivity. From this limited investigation, estimated thresholds leading to 3T3 NRU positive results due to photodegradation, formation of singlet oxygen quantum yield or a relative superoxide anion formation value are proposed.


Assuntos
Dermatite Fototóxica/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Processos Fotoquímicos , Células 3T3 , Algoritmos , Animais , Análise dos Mínimos Quadrados , Camundongos , Vermelho Neutro/metabolismo , Preparações Farmacêuticas/química , Fotoquímica/métodos , Análise de Componente Principal , Oxigênio Singlete/química , Superóxidos/química , Testes de Toxicidade/métodos , Raios Ultravioleta
3.
Mutagenesis ; 23(2): 111-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18227081

RESUMO

There is considerable concern regarding the biological plausibility of the response of certain chemicals in the in vitro photoclastogenicity assay, suggesting that this assay is oversensitive and lacks specificity. To explore this further, four coded compounds (aminotriazole, propantheline bromide, cycloheximide and disulfoton) were evaluated for their potential response in a photoclastogenicity assay in cultured Chinese hamster ovary (CHO) cells. None of the four compounds were shown to absorb ultraviolet radiation (UVR) or visible light in the 290- to 700-nm region of the electromagnetic spectrum. A fifth coded compound, tetracycline, which absorbs UVR, was also tested as this has previously been shown to be phototoxic in vitro (3T3-NRU assay) and is cytotoxic, but not genotoxic, at high concentrations in standard 'dark' genotoxicity assays in mammalian cells. The results showed that cycloheximide, disulfoton and tetracycline were clastogenic in CHO cells following UVR exposure (solar-simulated light at 700 mJ/cm(2)) but not in the absence of UVR. Aminotriazole and propantheline were negative in the presence and absence of UVR exposure. Follow-up testing showed that neither cycloheximide nor disulfoton was positive in the 3T3-NRU assay, the standard in vitro regulatory test for phototoxicity, a result consistent with their inability to absorb UVR. These data suggest that both cycloheximide and disulfoton are pseudophotoclastogens, like zinc oxide. Together, these data question the specificity of the in vitro photoclastogencity assay in CHO cells and raises further concern regarding its use for the assessment of chemical photosafety for regulatory purposes. At the very least, a review of the current guidance documents for the photosafety evaluation of pharmaceuticals and cosmetics should be undertaken urgently.


Assuntos
Aberrações Cromossômicas , Cicloeximida/toxicidade , Dissulfóton/toxicidade , Testes de Mutagenicidade/normas , Mutagênicos , Raios Ultravioleta , Amitrol (Herbicida)/toxicidade , Animais , Células CHO , Cricetinae , Cricetulus , Dano ao DNA , Propantelina/toxicidade , Tetraciclina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...