Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(9): 4573-4583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36960654

RESUMO

BACKGROUND: Accurate and timely access to large-scale crop damage information provides an essential reference for responding to agricultural disaster prevention and mitigation needs and ensuring food production security. The present study aimed to reveal the new characteristics of low-temperature cold damage to maize in the context of climate warming. Heilongjiang, one of the provinces with the highest latitude, the most significant climate change and the largest maize production in China, was taken as the study area. We combined meteorological stations and MODIS remote sensing data to spatially identify the occurrence and intensity of cold damage to maize based on the growing season temperature distance level index, as well as to assess the extent of cold damage. RESULTS: The main findings are: (i) The frequency and intensity range of cold damage in the growing season (May to September) in Heilongjiang Province from 1991 to 2020 against climate warming showed a decreasing trend. The average temperature from 1991 to 2000 was 17.777 °C, with seven occurrences of maize cold damage years, of which 5 years comprised widespread cold damage and 2 years comprised regional cold damage. The average temperature from 2000 to 2010 was 18.137 °C, with cold damage three times, of which 2 years comprised regional cold damage and 1 year comprised widespread cold damage. The average temperature from 2010 to 2020 was 18.130 °C, with one maize cold damage year occurring, which comprised regional cold damage. The frequency of maize chilling injury decreased significantly from 1991 to 2020, from 0.23 in 1991-2000 to 0.1 in 2000-2010 and, finally, to 0.03 in 2010-2020. (ii) The good consistency between MODIS_LST data and temperature data from meteorological stations suggests that MODIS_LST data can be used to build a temperature remote sensing estimation model for spatially extensive cold damage monitoring and intensity discrimination. (iii) Taking 2009 as an example of a large-scale cold damage year, the spatial discrimination of maize cold damage intensity shows that the spatial distribution of chilling injury intensity has no obvious geographical features. The intensity of cold damage was mainly mild cold damage. According to administrative regions, the scope of chilling injury was the largest in Mudanjiang City, Heihe City, and Jixi City, accounting for 91.56%, 86.25%, and 84.91%, respectively. The areas with the most extensive range of severe chilling injuries were the Great Khingan Mountains region, Heihe City, Mudanjiang City, Yichun City, and Jixi City. CONCLUSION: In the context of climate warming, the frequency and intensity range of maize cold damage showed a decreasing trend from 1991 to 2020 in Heilongjiang Province. The results of cold damage identification based on MODIS_LST data are accurate and can improve the spatial accuracy. The results of the present study provide a reference and guidance for dealing with the occurrence and defence of spatially refined cold damage. © 2023 Society of Chemical Industry.


Assuntos
Temperatura Baixa , Zea mays , Temperatura , Mudança Climática , Estações do Ano , China
2.
Int J Biometeorol ; 66(7): 1379-1390, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35477801

RESUMO

Land cover change (LCC) significantly changed the local/regional temperature. This paper attempts to reveal the effects of cropland expansion in different ways on temperature change from the 1900s to 2010s in Heilongjiang Province. To reach this goal, we conducted four simulation research schemes with the coupled Weather Research and Forecast (WRF)-Noah model to investigate the warming/cooling effect of cropland expansion. The results show that cropland expansion exerted different effects with different land-use type conversions. In the last century, the areas with grassland-to-cropland and wetland-to-cropland transition show the warming effect, and the average surface temperature in Heilongjiang Province increased by 0.023 ℃ and 0.024 ℃, respectively. The areas with forest-to-cropland transition show the cooling effect, in which the average temperature decreased by 0.103 ℃. The variation of air temperature is mainly caused by the variation of surface reflectance and surface net radiation flux. The results provide evidence that cropland expansion changes to biophysical landscape characteristics, warming/cooling the land surface and thus enhancing/reducing the temperature, and lead to regional climate change eventually.


Assuntos
Mudança Climática , Florestas , China , Produtos Agrícolas , Temperatura
3.
Environ Sci Pollut Res Int ; 29(5): 7452-7464, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34476694

RESUMO

The scope of this study is to analyze the climatic potential productivity of soybean [Glycine max (L.) Merr.] and explore the impact of climate change on soybean in the frigid region in China by using daily climatic variables from 144 meteorological stations for the period 1971‒2019. The gradually descending model is used to estimate photosynthesis, light-temperature, and climatic potential productivity of soybean. The results show that climate potential productivity of soybean in the frigid region ranges from large to small: Liaoning > Jilin > Heilongjiang > East Four Leagues (four cities in eastern Inner Mongolia), with Heilongjiang and East Four Leagues showing a significant upward trend. Spatially, the climate potential productivity is larger on plains than that on mountains. The Northeast Plain and Sanjiang Plain are areas with high climate potential productivity. Changes in climatic factors have different impacts on the climate potential productivity of soybean. The influence of temperature changes on the climate potential productivity shows a positive effect, and climate warming compensates for the lack of heat in the frigid region. Furthermore, radiation and precipitation are the main climatic factors leading to spatial differences in the climate potential productivity of soybean in the frigid region. Radiation changes have a positive effect on soybean climate potential productivity in plain areas and a negative effect on the mountains. However, precipitation reduction negatively affects most of the frigid region, while it has a positive effect on the two plains of Heilongjiang. Precipitation responses the needs of soybean growth. Our findings recommend that a transition of soybean planting from the mountainous region to plain, that is, from low potential productivity areas to high potential productivity areas, could be an effective strategy for regional optimization for planting structure and rational utilization of irrigation technology.


Assuntos
Mudança Climática , Glycine max , China , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...