Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3846, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890165

RESUMO

The rock mass around deep roadways has obvious creep characteristics in high-stress environments. Meanwhile, the cyclic impact load induced by roof fracturing also causes dynamic damage to the surrounding rock, leading to long-term large deformation. This paper examined the rock mass deformation mechanism around deep roadways based on the theory of rock creep perturbation effect considering perturbation sensitive zone. This study proposed a long-term stability control guideline for deep roadways under dynamic load. An innovative support system was developed for deep roadways, with concrete-filled steel tubular support being recommended as the main supporting body. A case study was conducted to validate the proposed supporting system. Monitoring over one year in the case study mine showed that the overall convergence deformation of the roadway was 35 mm, indicating that the roadway's long-term large deformation induced by creep perturbation was effectively controlled by using the proposed bearing circle support system.

2.
Molecules ; 24(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454996

RESUMO

The membrane electrode assembly (MEA) plays an important role in the proton exchange membrane fuel cell (PEMFC) performance. Typically, the structure comprises of a polymer electrolyte membrane sandwiched by agglomerate catalyst layers at the anode and cathode. Optimization of various parameters in the design of MEA is, thus, essential for reducing cost and material usage, while improving cell performance. In this paper, optimization of MEA is performed using a validated two-phase PEMFC numerical model. Key MEA parameters affecting the performance of a single PEMFC are determined from sensitivity analysis and are optimized using the response surface method (RSM). The optimization is carried out at two different operating voltages. The results show that membrane thickness and membrane protonic conductivity coefficient are the most significant parameters influencing cell performance. Notably, at higher voltage (0.8 V per cell), the current density can be improved by up to 40% while, at a lower voltage (0.6 V per cell), the current density may be doubled. The results presented can be of importance for fuel cell engineers to improve the stack performance and expedite the commercialization.


Assuntos
Fontes de Energia Bioelétrica , Eletroquímica/instrumentação , Eletrodos , Membranas Artificiais
3.
Entropy (Basel) ; 21(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33266906

RESUMO

Owing to its relatively high heat transfer performance and simple configurations, liquid cooling remains the preferred choice for electronic cooling and other applications. In this cooling approach, channel design plays an important role in dictating the cooling performance of the heat sink. Most cooling channel studies evaluate the performance in view of the first thermodynamics aspect. This study is conducted to investigate flow behaviour and heat transfer performance of an incompressible fluid in a cooling channel with oblique fins with regards to first law and second law of thermodynamics. The effect of oblique fin angle and inlet Reynolds number are investigated. In addition, the performance of the cooling channels for different heat fluxes is evaluated. The results indicate that the oblique fin channel with 20° angle yields the highest figure of merit, especially at higher Re (250-1000). The entropy generation is found to be lowest for an oblique fin channel with 90° angle, which is about twice than that of a conventional parallel channel. Increasing Re decreases the entropy generation, while increasing heat flux increases the entropy generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...