Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407151, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860918

RESUMO

Developing large-scale monolithic perovskite/silicon tandem devices based on industrial Czochralski silicon wafers will likely have to adopt double-side textured architecture, given their optical benefits and low manufacturing costs. However, the surface engineering strategies that are widely used in solution-processed perovskites to regulate the interface properties are not directly applicable to micrometric textures. Here, we devise a surface passivation strategy by dynamic spray coating (DSC) fluorinated thiophenethylammonium ligands, combining the advantages of providing conformal coverage and suppressing phase conversion on textured surfaces. From the viewpoint of molecular engineering, theoretical calculation and experimental results demonstrate that introducing trifluoromethyl group provide more effective surface passivation through strong interaction and energy alignment by forming a dipole layer. Consequently, the DSC treatment of this bifunctional molecule enables the tandem cells based on industrial silicon wafers to achieve a certified stabilized power conversion efficiency of 30.89%. In addition, encapsulated devices display excellent operational stability by retaining over 97% of their initial performance after 600 h continuous illumination.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124612, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38857548

RESUMO

High fructose intake is an important cause of metabolic disease. Due to the increasing prevalence of metabolic diseases worldwide, the development of an accurate and efficient tool for monitoring fructose in food is urgently needed to control the intake of fructose. Herein, a new fluorescent probe NBD-PQ-B with 7-nitrobenz-2-oxa-1, 3-diazole (NBD) as the fluorophore, piperazine (PQ) as the bridging group and phenylboronic acid (B) as the recognition receptor, was synthesized to detect fructose. The fluorescence of NBD-PQ-B increased linearly at 550 nm at an excitation wavelength of 497 nm with increasing fructose concentration from 0.1 to 20 mM. The limit of detection (LOD) of fructose was 40 µM. The pKa values of NBD-PQ-B and its fructose complexes were 4.1 and 10.0, respectively. In addition, NBD-PQ-B bound to fructose in a few seconds. The present technique was applied to determine the fructose content in beverages, honey, and watermelon with satisfactory results. Finally, the system could not only be applied in an aqueous solution with a spectrophotometer, but also be fabricated as a NBD-PQ-B/polyvinyl oxide (PEO) film by electrospinning for on-site food analysis simply with the assistance of a smartphone.

3.
Chem Sci ; 15(18): 6884-6890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725491

RESUMO

A class of chiral-bridged biphenyl phosphine-carboxylate bifunctional ligands CB-Phos has been developed and successfully applied to Pd(0)-catalyzed single enantioselective C-H arylation and a one pot cascade reaction involving Suzuki cross-coupling and C-H arylation. The catalytic system provides a new and convenient way for the synthesis of versatile chiral dihydrophenanthridines with rich structures and broad functional group tolerance. Good to excellent yields with high enantioselectivities were generally achieved. The reaction mechanism of the cascade reaction was also preliminarily discussed.

4.
Clin Lung Cancer ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38705833

RESUMO

BACKGROUND: Immune checkpoint inhibitors have revolutionized non-small cell lung cancer (NSCLC) treatment but may pose greater technical challenges for surgery. This study aims to assess the feasibility and oncological effectiveness of video-assisted thoracoscopic surgery (VATS) for resectable stage III NSCLC after neoadjuvant immunochemotherapy. METHODS: Initial stage IIIA-IIIB NSCLC patients with neoadjuvant immunochemotherapy undergoing either VATS or open lobectomy at 6 medical centers during 2019-2023 were retrospectively identified. Perioperative outcomes and 2-year survival was analyzed. Propensity-score matching (PSM) was employed to balance patient baseline characteristics. RESULTS: Among the total 143 patients, PSM yielded 62 cases each for VATS and OPEN groups. Induction-related adverse events were comparable between the 2 groups. VATS showed a 14.5% conversion rate. Notably, VATS decreased numeric rating scales for postoperative pain, shortened chest tube duration (5[4-7] vs. 6[5-8] days, P = .021), reduced postoperative comorbidities (21.0% vs. 37.1%, P = .048), and dissected less N1 lymph nodes (5[4-6] vs. 7[5-9], P = .005) compared with thoracotomy. Even when converted, VATS achieves perioperative outcomes equivalent to thoracotomy. Additionally, over a median follow-up of 29.5 months, VATS and thoracotomy demonstrated comparable 2-year recurrence-free survival (77.20% vs. 73.73%, P = .640), overall survival (87.22% vs. 88.00%, P = .738), cumulative incidences of cancer-related death, and recurrence patterns. Subsequent subgroup comparisons and multivariate Cox analysis likewise revealed no statistical difference between VATS and thoracotomy. CONCLUSION: VATS is a viable and effective option for resectable stage III NSCLC patients following neoadjuvant immunochemotherapy, leading to decreased surgical-related pain, earlier chest tube removal, reduced postoperative complications, and similar survival outcomes compared to thoracotomy.

5.
Front Nutr ; 11: 1400063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751743

RESUMO

The present study demonstrated the digestion behavior and fermentation characteristics of a sulfated polysaccharide from Sargassum fusiforme (SFSP) in the simulated digestion tract environment. The results showed that the molecular weight of two components in SFSP could not be changed by simulated digestion, and no free monosaccharide was produced. This indicates that most of SFSP can reach the colon as prototypes. During the fermentation with human intestinal flora in vitro, the higher-molecular-weight component of SFSP was utilized, the total sugar content decreased by 16%, the reducing sugar content increased, and the galactose content in monosaccharide composition decreased relatively. This indicates that SFSP can be selectively utilized by human intestinal flora. At the same time, SFSP also changed the structure of intestinal flora. Compared with the blank group, SFSP significantly increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes. At the genus level, the abundances of Bacteroides and Megamonas increased, while the abundances of Shigella, Klebsiella, and Collinsella decreased. Moreover, the concentrations of total short-chain fatty acids (SCFAs), acetic, propionic and n-butyric acids significantly increased compared to the blank group. SFSP could down-regulate the contents of trimethylamine, piperidone and secondary bile acid in fermentation broth. The contents of nicotinic acid, pantothenic acid and other organic acids were increased. Therefore, SFSP shows significant potential to regulate gut microbiota and promote human health.

6.
Trauma Case Rep ; 52: 101040, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38784218

RESUMO

A 28-year-old man involved in a serious motorcycle accident was admitted to our hospital with comminuted fractures of the ipsilateral femoral shaft and tibial shaft, as well as multiple fractures of the right lower limb, including the proximal fibula, medial malleolus, and the third and fourth distal metatarsals. In addition, the patient suffered a skin contusion and laceration of the right foot. On the first day of admission, this patient suddenly developed tachycardia, pyrexia, and tachypnoea, and was immediately transferred to the ICU for further treatment due to a CT-diagnosed pulmonary fat embolism (FE). As a symptomatic treatment, he received a prophylactic dose of low-molecular-weight heparin for 10 days, after which his condition improved. A Doppler ultrasound of the lower leg and a follow-up chest CT angiography were performed, which excluded any remaining thrombus and verified that the pulmonary FE had improved without deterioration. Closed-reduction and retrograde intramedullary nailing were performed for the femoral shaft fractures, while antegrade intramedullary nailing was performed for the tibial shaft fractures under general anaesthesia. In the three-year follow-up, the patient had recovered with good function of the right limb, without any respiratory discomfort. Both the femoral and tibial shaft fractures finally resolved without any further treatment. Ipsilateral femoral and tibial shaft fractures should undergo surgical stabilisation as early as possible to avoid pulmonary FEs. It is still controversial whether intramedullary nailing is suitable for floating knee injuries complicated by pulmonary FEs. However, if patients with pulmonary FEs require intramedullary nailing, we suggest that surgery should be performed after at least one week of anticoagulant use, when patient vital signs are stable and there is no sign of dyspnoea. In addition, patients should try to avoid reaming during the operation to prevent and decrease "second hit" for the lung.

7.
Exp Hematol Oncol ; 13(1): 52, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760861

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1ß and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1ß signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.

8.
Cell Rep Med ; 5(5): 101531, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38697105

RESUMO

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.


Assuntos
Antígeno B7-H1 , Interleucina-15 , Microambiente Tumoral , Interleucina-15/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/genética , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Feminino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia
9.
iScience ; 27(6): 109862, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784022

RESUMO

Immunotherapy has revolutionized cancer treatment but its efficacy depends on a robust immune response in the tumor. Silencing of the tumor suppressor p53 is common in tumors and can affect the recruitment and activation of different immune cells, leading to immune evasion and poor therapy response. We found that the p53 activating stapled peptide MDM2/MDMX inhibitor Sulanemadlin (ALRN-6924) inhibited p53 wild-type cancer cell growth in vitro and in vivo. In mice carrying p53 wild-type CT26.WT tumors, monotherapy with the PD-1 inhibitor DX400 or Sulanemadlin delayed tumor doubling time by 50% and 37%, respectively, while combination therapy decreased tumor doubling time by 93% leading to an increased median survival time. Sulanemadlin treatment led to increased immunogenicity and combination treatment with PD-1 inhibition resulted in an increased tumor infiltration of lymphocytes. This combination treatment strategy could potentially turn partial responders into responders of immunotherapy, expanding the patient target group for PD-1-targeting immunotherapy.

10.
Int J Gen Med ; 17: 2001-2009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736672

RESUMO

Background: Lipoprotein(a) [Lp(a)] is a well-established risk factor for ischaemic stroke (IS). It is unclear whether Lp(a) is associated with IS in patients with atrial fibrillation (AF). The aim of this study is to explore the association between the concentration of Lp(a) and the risk of IS in AF patients, hope to find the potential risk factor for the IS in AF patients. Methods: This study is a retrospective cohort study. The screened AF patients between January 2017 and July 2021 were matched at 1:1 by the propensity score matching (PSM) method in the Second Affiliated Hospital of Nanchang University. Associations between Lp(a) and ischaemic stroke were analysed using logistic regression models, stratified analysis and sensitivity analysis. Statistical analyses were conducted using IBM SPSS software. Results: The number of enrolled participates is 2258, which contains 1129 non-AF patients and 1129 AF patients. Among IS patients, the median Lp(a) concentration was higher than that of controls (17.03 vs. 15.36 mg/dL, P = 0.032). The Spearman rank-order correlation coefficients revealed significant positive relationships between IS and Lp(a) (P = 0.032). In addition, a significant increase in IS risk was associated with Lp(a) levels >30.00 mg/dL in unadjusted model [OR:1.263, 95% CI(1.046-1.523), P = 0.015], model 1 [OR:1.284, 95% CI(1.062,1.552), P = 0.010], model 2 [OR: 1.297, 95% CI(1.07,1.573). P = 0.008], and model 3 [OR: 1.290, 95% CI (1.064, 1.562). P = 0.009]. The stratified analysis indicated that this correlation was not affected by female sex [1.484 (1.117, 1.972), P = 0.006], age ≤ 60 [1.864 (1.067-3.254), P=0.029], hypertension [1.359 (1.074, 1.721), P = 0.011], or non-coronary heart disease (CHD) [1.388 (1.108, 1.738), P = 0.004]. Conclusion: High levels of Lp(a) were significantly related to IS in AF patients and may be a potential risk factor in the onset of an IS in AF patients.

11.
Sci Total Environ ; 927: 172136, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569946

RESUMO

To achieve the collaborative elimination of N2O and carbon of potent greenhouse pollutants from automotive mobile sources, a chemical kinetic model is developed to accurately track the heterogeneous process of carbon-catalyzed N2O reduction based on density functional theory, with experimental data used to validate the model's reliability. The influence of carbon structure, site density, and surface chemical properties on N2O catalytic reduction can be analyzed within this system. Results reveal that the free-edge site of carbon accurately describes the catalytic reduction process of N2O. Adsorption of N2O to carbon edges in O-down, N-down, or parallel orientations exhibits an exothermic process with energy barriers. The N2O with O-down reduction pathway predominates due to the limitations imposed by the unitary carbon site. As the number of active carbon atoms at carbon edges increases, the N2O reaction mode tends towards parallel and N-down pathways, resulting in a significant enhancement of N2O conversion rates and a reduction in catalytic temperatures, with the lowest achievable temperature being 300 K. Furthermore, the triplet carbon structure exhibits higher efficiency in N2O catalytic reduction compared to the singlet carbon structure, achieving a remarkable N2O conversion rate of 93.8 % within the typical temperature exhaust window of diesel engines. This study supplies a breakthrough for carbon materials as catalysts for achieving high N2O conversion rates at low cost, which is important for the collaborative catalytic elimination of N2O and carbon black pollutants.

12.
Talanta ; 274: 126068, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599119

RESUMO

Water is a fundamental element for life. The highly selective and sensitive sensing of water is always attractive for mankind in activities such as physiological processes study and extraterrestrial life exploration. Fluorescent MOFs with precise channels and functional groups might specifically recognize water molecules with hydrogen-bond interaction or coordination effects and work as water sensors. As a proof of concept, herein, an amino functionalized Zn-MOF (named as complex 1) with pores that just right for water molecules to form hydrogen bond bridges is revealed for highly selective and sensitive fluorescent sensing of water. The single-crystal X-ray diffraction analysis indicates that the 3D framework of complex 1 is functionalized with free amino groups in the channels. Hydrogen bonds formed in the channel along b-axis as water bridges to connect two adjacent NH2bdc ligands and result in the restriction of intramolecular motions (RIM) which could responsible for the selective turn-on fluorescence response to water. Complex 1 exhibits high sensitive to trace amount of water in organic solvents and could be used for water detection in a wide range water contents. Take advantages of complex 1, portable sensors (complex 1@PMMA) were prepared and used in the highly sensitive water sensing.

13.
Nat Commun ; 15(1): 3137, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605004

RESUMO

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the polymeric materials used in LS. This constrains the functionality of the items produced, including limited available colours. Moreover, PA-12 objects tend to biofoul in wet environments. Therefore, a key challenge is to develop an inexpensive route to introduce desirable functionality to PA-12. We report a facile, clean, and scalable approach to modification of PA-12, exploiting supercritical carbon dioxide (scCO2) and free radical polymerizations to yield functionalised PA-12 materials. These can be easily printed using commercial apparatus. We demonstrate the potential by creating coloured PA-12 materials and show that the same approach can be utilized to create anti-biofouling objects. Our approach to functionalise materials could open significant new applications for AM.

14.
Int J Biol Macromol ; 265(Pt 1): 130911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492693

RESUMO

In this study, the solubilization and structural changes of lignin in naked oat stems were investigated under subcritical water autohydrolysis systems (170-210 °C, 0.68-1.85 MPa). In this system, Hemicellulose was preferentially hydrolyzed in the liquid water at elevated temperatures, leading to the production of acetic acid and glucuronic acid, which acidified the reaction system. Under acidic and high-temperature conditions, lignin primarily underwent degradation and condensation reactions. At autohydrolysis temperatures below 190 °C and autohydrolysis pressures below 1.22 MPa, lignin degradation was predominant, realizing a maximum lignin removal of 47.8 % and breakage of numerous ß-O-4 bonds from lignin. At autohydrolysis temperatures above 190 °C and autohydrolysis pressures above 1.22 MPa, lignin condensation dominated, with an increase in the amount of organic acids generated upon hemicellulose degradation, leading to condensation reactions with the degraded low-molecular-weight lignin. The degree of lignin condensation was positively correlated with the temperature of the reaction system. This study provides essential insights into the dynamic changes in the structure of lignin in both the hydrolysis residue and hydrolysis solution during subcritical water autohydrolysis.


Assuntos
Lignina , Água , Lignina/química , Avena , Compostos Orgânicos , Temperatura , Hidrólise
15.
Int J Biol Macromol ; 265(Pt 2): 130898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508556

RESUMO

Anti-infection hydrogels have recently aroused enormous attraction, particularly in the treatment of chronic wounds. Herein, silver nanoparticle@catechol formaldehyde resin microspheres (Ag@CFRs) were fabricated by one-step hydrothermal method and subsequently encapsulated in hydrogels which were developed by Schiff base reaction between aldehyde groups in oxidized hyaluronic acid and amino groups in carboxymethyl chitosan. The developed polysaccharide hydrogel exhibited microporous structure, high swelling capacity, favorable mechanical strength, enhanced tissue adhesion and photothermal activities. Additionally, the hydrogel not only ensured long-term and high-efficiency antibacterial performance (99.9 %) toward E. coli and S. aureus, but also realized superior cytocompatibility in vitro. Moreover, based on the triple antibacterial strategies endowed by chitosan, silver nanoparticles and the photothermal properties of catechol microspheres, the composite hydrogel exhibited excellent anti-infection function, significantly downregulated inflammatory factors (TNF-α and IL-1ß) and promoted in vivo infected-wound healing. These results demonstrated that the polysaccharide hydrogel containing Ag@CFRs has great potential for infected-wounds repair.


Assuntos
Quitosana , Nanopartículas Metálicas , Hidrogéis/farmacologia , Prata , Escherichia coli , Microesferas , Staphylococcus aureus , Antibacterianos/farmacologia , Catecóis/farmacologia , Anti-Inflamatórios , Polissacarídeos/farmacologia
16.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38530978

RESUMO

OBJECTIVES: Immune checkpoint blockades (ICB) have been proven to improve prognosis of non-small cell lung cancer in the neoadjuvant setting, while whether its perioperative use could bring extra benefit remained unidentified. We aimed to demonstrate the prognostic benefit of perioperative ICB over preoperative-only use and investigate who could benefit from this 'sandwich ICB therapy'. METHODS: Patients undergoing neoadjuvant therapy followed by surgery from 2018 to 2022 were retrospectively reviewed, and were divided into 4 groups based on the perioperative regimens: pre-ICB + post-computed tomography (CT), pre-ICB-only, pre-CT + post-ICB and pre-CT-only. Treatment-related adverse events, surgical outcomes, therapeutic response, recurrence-free survival and overall survival were compared. RESULTS: Of 214 enrolled patients with preoperative therapy, 108 underwent immunochemotherapy and 106 underwent platinum-based chemotherapy. Compared with preoperative chemotherapy, preoperative immunochemotherapy was demonstrated with significantly higher major pathologic response (57/108 vs 12/106) and pathologic complete response (35/108 vs 4/106) rates with comparable adverse events. Regarding survival, perioperative ICB significantly improved the recurrence-free survival [versus pre-CT-only hazard ratio (HR) 0.15; 95% CI 0.09-0.27; versus pre-ICB-only HR 0.36; 95% CI 0.15-0.88] and overall survival (versus pre-CT-only HR 0.24; 95% CI 0.08-0.68). In patients without major pathologic response, perioperative ICB was observed to decrease the risk of recurrence (HR 0.31; 95% CI 0.11-0.83) compared with preoperative ICB, and was an independent prognostic factor (P < 0.05) for recurrence-free survival. CONCLUSIONS: Perioperative ICB showed promising efficacy in improving pathological response and survival outcomes of resectable non-small cell lung cancer. For patients without major pathologic response after resection followed by preoperative ICB, sequential ICB treatment could be considered.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Prognóstico , Terapia Neoadjuvante
17.
Front Oncol ; 14: 1319819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347841

RESUMO

Background: Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy, commonly affecting the external genitalia and perianal area of the elderly with unclear pathogenesis. Metabolomics provides a novel perspective for uncovering the metabolic mechanisms of a verity of cancers. Materials and methods: Here, we explored the metabolome of EMPD using an untargeted strategy. In order to further investigate the potential relationship between metabolites and gene expression, we re-analyzed the gene expression microarray data (GSE117285) using differential expression analysis and functional enrichment analyses. Results: Results showed that a total of 896 metabolites were identified and 87 metabolites including 37 upregulated and 50 downregulated significantly in EMPD were sought out. In the following feature selection analyses, four metabolites, namely, cyclopentyl fentanyl-d5, LPI 17:0, guanosine-3',5'-cyclic monophosphate, kynurenine (KYN, high in EMPD) were identified by both random forest and support vector machine analyses. We then identified 1,079 dysfunctional genes: 646 upregulated and 433 downregulated in EMPD. Specifically, the tryptophan-degrading enzyme including indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) were also increased. Generally, cancers exhibit a high expression of IDO1 and TDO2 to catabolize tryptophan, generating abundant KYN. Moreover, we also noticed the abnormal activation of sustaining proliferative signaling in EMPD. Conclusion: In conclusion, this study was the first to reveal the metabolome profile of EMPD. Our results demonstrate that IDO1/TDO2-initialized KYN metabolic pathway may play a vital role in the development and progression of EMPD, which may serve as a potential therapeutic target for treating EMPD.

18.
RSC Adv ; 14(9): 6374-6384, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38380238

RESUMO

The radical (co)polymerization of long-chain α-olefins (C4+) to produce high molecular weight (Mw) polymers is of great importance. However, this process is currently faced with significant challenges due to the presence of less reactive allylic radicals during radical (co)polymerization, leading to oligomers or polymers with extremely low Mw (less than 1 × 104 g mol-1). Using copolymerization of 1-octene with methyl acrylate (MA) as a proof-of-concept for addressing this challenge, we present a feasible method for synthesizing high Mw α-olefin copolymers via scandium trifluoromethanesulfonate (Sc(OTf)3)-mediated radical copolymerization. In this case, copolymers of 1-octene and MA (poly(1-octene-alt-MA)) with a Mw exceeding 3 × 104 g mol-1 were successfully synthesized in the presence of Sc(OTf)3. Meanwhile, the presence of alternating 1-octene-MA sequential structures was observed. To further enhance the Mw of poly(1-octene-alt-MA), a difunctional comonomer, 1,7-octadiene, was introduced to copolymerize with 1-octene and MA. The results indicate that the incorporation of difunctional comonomer leads to a significant increase in the Mw of the copolymers synthesized. The addition of 1 mol% of 1,7-octadiene resulted in a copolymer with a remarkably high Mw of up to 13.45 × 104 g mol-1 while still maintaining a high degree of the alternating 1-octene-MA sequence (41%). The influence of polymerization parameters on the molecular weight were also investigated. Increasing the monomer concentration, reducing the dosage of initiator, and lowering the polymerization temperature have been found to be advantageous in enhancing the molecular weight. This approach has also been successfully applied to the synthesis of high molecular weight alternating copolymers of other long-chain α-olefins, including 1-hexene, 1-decene and 1-tetradecane, with methyl acrylate. In summary, this study provides a feasible method for converting "less activated" α-olefins into high Mw olefin copolymers. This approach holds significant potential for the production of value-added polyolefins, thus offering promising prospects for future applications.

20.
Angew Chem Int Ed Engl ; : e202318782, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354089

RESUMO

High performance solution-processable deep-blue emitters with a Commission International de l'Eclairage (CIE) coordinate of CIEy≤0.08 are highly desired in ultrahigh-definition display. Although, deep-blue materials with hybridized local and charge-transfer (HLCT) excited-state feature are promising candidates, their rigidity and planar molecular structures limit their application in solution-processing technique. Herein, four novel deep-blue solution-processable HLCT emitters were first proposed by attaching rigid imide aliphatic rings as functional units onto the HLCT emitting core. The functional units not only improve solubility, enhance thermal properties and morphological stability of the emitting core, but also promote photoluminescence efficiency, balance charge carrier transport, and inhibit aggregation-caused quenching effect due to the weak electron-withdrawing property as well as steric hindrance. The corresponding solution-processable organic light-emitting diodes (OLEDs) substantiate an unprecedented maximum external quantum efficiency (EQEmax) of 11.5 % with an emission peak at 456 nm and excellent colour purity (full width at half maximum=56 nm and CIEy=0.09). These efficiencies represent the state-of-the-art device performance among the solution-processable blue OLEDs based on the "hot exciton" mechanism. This simple strategy opens up a new avenue for designing highly efficient solution-processable deep-blue organic luminescent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...