Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577582

RESUMO

Background: Genetic study of late-onset Alzheimer's disease (AD) reveals that a rare Arginine-to-Histamine mutation at amino acid residue 47 (R47H) in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) results in increased disease risk. TREM2 plays critical roles in regulating microglial response to amyloid plaques in AD, leading to their clustering and activation surrounding the plaques. We previously showed that increasing human TREM2 gene dosage exerts neuroprotective effects against AD-related deficits in amyloid depositing mouse models of AD. However, the in vivo effects of the R47H mutation on human TREM2-mediated microglial reprogramming and neuroprotection remains poorly understood. Method: Here we created a BAC transgenic mouse model expressing human TREM2 with the R47H mutation in its cognate genomic context (BAC-TREM2-R47H). Importantly, the BAC used in this study was engineered to delete critical exons of other TREM-like genes on the BAC to prevent confounding effects of overexpressing multiple TREM-like genes. We crossed BAC-TREM2- R47H mice with 5xFAD [1], an amyloid depositing mouse model of AD, to evaluate amyloid pathologies and microglial phenotypes, transcriptomics and in situ expression of key TREM2 -dosage dependent genes. We also compared the key findings in 5xFAD/BAC-TREM2-R47H to those observed in 5xFAD/BAC-TREM2 mice. Result: Both BAC-TREM2 and BAC-TREM2-R47H showed proper expression of three splicing isoforms of TREM2 that are normally found in human. In 5xFAD background, elevated TREM2-R47H gene dosages significantly reduced the plaque burden, especially the filamentous type. The results were consistent with enhanced phagocytosis and altered NLRP3 inflammasome activation in BAC- TREM2-R47H microglia in vitro. However, unlike TREM2 overexpression, elevated TREM2- R47H in 5xFAD failed to ameliorate cognitive and transcriptomic deficits. In situ analysis of key TREM2 -dosage dependent genes and microglial morphology uncovered that TREM2-R47H showed a loss-of-function phenotype in reprogramming of plaque-associated microglial reactivity and gene expression in 5xFAD. Conclusion: Our study demonstrated that the AD-risk variant has a previously unknown, mixture of partial and full loss of TREM2 functions in modulating microglial response in AD mouse brains. Together, our new BAC-TREM2-R47H model and prior BAC-TREM2 mice are invaluable resource to facilitate the therapeutic discovery that target human TREM2 and its R47H variant to ameliorate AD and other neurodegenerative disorders.

2.
Environ Health Perspect ; 131(3): 37003, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862174

RESUMO

BACKGROUND: Human breast milk is a primary route of exposure to perfluoroalkyl substances (PFAS) in infants. To understand the associated risks, the occurrence of PFAS in human milk and the toxicokinetics of PFAS in infants need to be addressed. OBJECTIVES: We determined levels of emerging and legacy PFAS in human milk and urine samples from Chinese breastfed infants, estimated renal clearance, and predicted infant serum PFAS levels. METHODS: In total, human milk samples were collected from 1,151 lactating mothers in 21 cities in China. In addition, 80 paired infant cord blood and urine samples were obtained from two cities. Nine emerging PFAS and 13 legacy PFAS were analyzed in the samples using ultra high-performance liquid chromatography tandem mass spectrometry. Renal clearance rates (CLrenals) of PFAS were estimated in the paired samples. PFAS serum concentrations in infants (<1 year of age) were predicted using a first-order pharmacokinetic model. RESULTS: All nine emerging PFAS were detected in human milk, with the detection rates of 6:2 Cl-PFESA, PFMOAA, and PFO5DoDA all exceeding 70%. The level of 6:2 Cl-PFESA in human milk (median concentration=13.6 ng/L) ranked third after PFOA (336 ng/L) and PFOS (49.7 ng/L). The estimated daily intake (EDI) values of PFOA and PFOS exceeded the reference dose (RfD) of 20 ng/kg BW per day recommended by the U.S. Environmental Protection Agency in 78% and 17% of breastfed infant samples, respectively. 6:2 Cl-PFESA had the lowest infant CLrenal (0.009mL/kg BW per day), corresponding to the longest estimated half-life of 49 y. The average half-lives of PFMOAA, PFO2HxA, and PFO3OA were 0.221, 0.075, and 0.304 y, respectively. The CLrenals of PFOA, PFNA, and PFDA were slower in infants than in adults. CONCLUSIONS: Our results demonstrate the widespread occurrence of emerging PFAS in human milk in China. The relatively high EDIs and half-lives of emerging PFAS suggest potential health risks of postnatal exposure in newborns. https://doi.org/10.1289/EHP11403.


Assuntos
Aleitamento Materno , Fluorocarbonos , Recém-Nascido , Estados Unidos , Adulto , Feminino , Humanos , Lactente , Carga Corporal (Radioterapia) , População do Leste Asiático , Lactação
3.
Sci Total Environ ; 857(Pt 3): 159638, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280053

RESUMO

Municipal wastewater treatment plants (WWTPs) can reflect the pollution status of per- and polyfluoroalkyl substances (PFASs) pollution. Here, matched influent, effluent, and sludge samples were collected from 58 municipal WWTPs in China, South Sudan, Tanzania, and Kenya. Target and suspect screening of PFASs was performed to explore their profiles in WWTPs and assess removal efficiency and environmental emissions. In total, 155 and 58 PFASs were identified in WWTPs in China and Africa, respectively; 146 and 126 PFASs were identified in wastewater and sludge, respectively. Novel compounds belonging to per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs), hydrogen-substituted polyfluorocarboxylic acids (H-PFCAs), and perfluoroalkyl sulfonamides (PFSMs) accounted for a considerable proportion of total PFASs (ΣPFASs) in Chinese WWTPs and were also widely detected in African samples. In China, estimated national emissions of ΣPFASs in WWTPs exceeded 16.8 t in 2015, with >60 % originating from emerging PFASs. Notably, current treatment processes are not effective at removing PFASs, with 35 of the 54 WWTPs showing emissions higher than mass loads. PFAS removal was also structure dependent. Based on machine learning models, we found that molecular descriptors (e.g., LogP and molecular weight) may affect adsorption behavior by increasing hydrophobicity, while other factors (e.g., polar surface area and molar refractivity) may play critical roles in PFAS removal and provide novel insights into PFAS pollution control. In conclusion, this study comprehensively screened PFASs in municipal WWTPs and determined the drivers affecting PFAS behavior in WWTPs based on machine learning models.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Esgotos/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , China , Quênia , Monitoramento Ambiental
4.
Sci Transl Med ; 14(661): eabq0095, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070367

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays crucial roles in Alzheimer's disease (AD) by regulating microglia migration toward, and phagocytosis of oligomeric amyloid-ß (oAß) and amyloid plaques. Studies in rodent models of AD have shown that mice with increased TREM2 expression have reduced amyloid pathology. Here, we identified a TREM2 agonist monoclonal Ab (Ab18) by panning a phage-displayed single-chain variable fragment Ab library. By engineering the bivalent immunoglobulin G1 (IgG1) to tetra-variable domain immunoglobulin (TVD-Ig), we further increased the TREM2 activation by 100-fold. Stronger TREM2 activation led to enhanced microglia phagocytosis of the oAß-lipid complex, migration toward oAß, and improved microglia survival in vitro. Mechanistic studies showed increased TREM2 clustering on microglia by the tetravalent Ab18 TVD-Ig without altering microglial TREM2 amount. An engineered bispecific Ab targeting TREM2 and transferrin receptor (TfR; Ab18 TVD-Ig/αTfR) improved Ab brain entry by more than 10-fold with a broad brain parenchyma distribution. Weekly treatment of 5XFAD mice (a model of AD) with Ab18 TVD-Ig/αTfR showed a considerable reduction of amyloid burden with increased microglia migration to and phagocytosis of amyloid plaques, improved synaptic and neuronal marker intensity, improved cognitive functions, reduced endogenous tau hyperphosphorylation, and decreased phosphorylated neurofilament H immunostaining. This study demonstrated the feasibility of engineering multivalent TREM2 agonistic Ab coupled with TfR-mediated brain delivery to enhance microglia functions and reduce amyloid pathology in vitro and in vivo. This Ab engineering approach enables the development of effective TREM2-targeting therapies for AD.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos , Modelos Animais de Doenças , Glicoproteínas de Membrana , Camundongos , Placa Amiloide/patologia , Receptores Imunológicos
5.
Mol Neurodegener ; 17(1): 44, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717259

RESUMO

BACKGROUND: Microglia plays crucial roles in Alzheimer's disease (AD) development. Triggering receptor expressed on myeloid cells 2 (TREM2) in association with DAP12 mediates signaling affecting microglia function. Here we study the negative regulation of TREM2 functions by leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2), an inhibitory receptor bearing ITIM motifs. METHODS: To specifically interrogate LILRB2-ligand (oAß and PS) interactions and microglia functions, we generated potent antagonistic LILRB2 antibodies with sub-nanomolar level activities. The biological effects of LILRB2 antagonist antibody (Ab29) were studied in human induced pluripotent stem cell (iPSC)-derived microglia (hMGLs) for migration, oAß phagocytosis, and upregulation of inflammatory cytokines. Effects of the LILRB2 antagonist antibody on microglial responses to amyloid plaques were further studied in vivo using stereotaxic grafted microglia in 5XFAD mice. RESULTS: We confirmed the expression of both LILRB2 and TREM2 in human brain microglia using immunofluorescence. Upon co-ligation of the LILRB2 and TREM2 by shared ligands oAß or PS, TREM2 signaling was significantly inhibited. We identified a monoclonal antibody (Ab29) that blocks LILRB2/ligand interactions and prevents TREM2 signaling inhibition mediated by LILRB2. Further, Ab29 enhanced microglia phagocytosis, TREM2 signaling, migration, and cytokine responses to the oAß-lipoprotein complex in hMGL and microglia cell line HMC3. In vivo studies showed significantly enhanced clustering of microglia around plaques with a prominent increase in microglial amyloid plaque phagocytosis when 5XFAD mice were treated with Ab29. CONCLUSIONS: This study revealed for the first time the molecular mechanisms of LILRB2-mediated inhibition of TREM2 signaling in microglia and demonstrated a novel approach of enhancing TREM2-mediated microglia functions by blocking LILRB2-ligand interactions. Translationally, a LILRB2 antagonist antibody completely rescued the inhibition of TREM2 signaling by LILRB2, suggesting a novel therapeutic strategy for improving microglial functions.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Placa Amiloide/metabolismo , Receptores Imunológicos/metabolismo
6.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35229730

RESUMO

Down syndrome (DS), or trisomy 21, is one of the critical risk factors for early-onset Alzheimer's disease (AD), implicating key roles for chromosome 21-encoded genes in the pathogenesis of AD. We previously identified a role for the deubiquitinase USP25, encoded on chromosome 21, in regulating microglial homeostasis in the AD brain; however, whether USP25 affects amyloid pathology remains unknown. Here, by crossing 5×FAD AD and Dp16 DS mice, we observed that trisomy 21 exacerbated amyloid pathology in the 5×FAD brain. Moreover, bacterial artificial chromosome (BAC) transgene-mediated USP25 overexpression increased amyloid deposition in the 5×FAD mouse brain, whereas genetic deletion of Usp25 reduced amyloid deposition. Furthermore, our results demonstrate that USP25 promoted ß cleavage of APP and Aß generation by reducing the ubiquitination and lysosomal degradation of both APP and BACE1. Importantly, pharmacological inhibition of USP25 ameliorated amyloid pathology in the 5×FAD mouse brain. In summary, we identified the DS-related gene USP25 as a critical regulator of AD pathology, and our data suggest that USP25 serves as a potential pharmacological target for AD drug development.


Assuntos
Doença de Alzheimer , Amiloidose , Síndrome de Down , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Camundongos , Camundongos Transgênicos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
7.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156424

RESUMO

Biochemical, pathogenic, and human genetic data confirm that GSAP (γ-secretase activating protein), a selective γ-secretase modulatory protein, plays important roles in Alzheimer's disease (AD) and Down's syndrome. However, the molecular mechanism(s) underlying GSAP-dependent pathogenesis remains largely elusive. Here, through unbiased proteomics and single-nuclei RNAseq, we identified that GSAP regulates multiple biological pathways, including protein phosphorylation, trafficking, lipid metabolism, and mitochondrial function. We demonstrated that GSAP physically interacts with the Fe65-APP complex to regulate APP trafficking/partitioning. GSAP is enriched in the mitochondria-associated membrane (MAM) and regulates lipid homeostasis through the amyloidogenic processing of APP. GSAP deletion generates a lipid environment unfavorable for AD pathogenesis, leading to improved mitochondrial function and the rescue of cognitive deficits in an AD mouse model. Finally, we identified a novel GSAP single-nucleotide polymorphism that regulates its brain transcript level and is associated with an increased AD risk. Together, our findings indicate that GSAP impairs mitochondrial function through its MAM localization and that lowering GSAP expression reduces pathological effects associated with AD.


Assuntos
Doença de Alzheimer/patologia , Homeostase , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Sequência de Bases , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Teste de Campo Aberto , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas/genética , Transcrição Gênica
8.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32941599

RESUMO

Variations in many genes linked to sporadic Alzheimer's disease (AD) show abundant expression in microglia, but relationships among these genes remain largely elusive. Here, we establish isogenic human ESC-derived microglia-like cell lines (hMGLs) harboring AD variants in CD33, INPP5D, SORL1, and TREM2 loci and curate a comprehensive atlas comprising ATAC-seq, ChIP-seq, RNA-seq, and proteomics datasets. AD-like expression signatures are observed in AD mutant SORL1 and TREM2 hMGLs, while integrative multi-omic analysis of combined epigenetic and expression datasets indicates up-regulation of APOE as a convergent pathogenic node. We also observe cross-regulatory relationships between SORL1 and TREM2, in which SORL1R744X hMGLs induce TREM2 expression to enhance APOE expression. AD-associated SORL1 and TREM2 mutations also impaired hMGL Aß uptake in an APOE-dependent manner in vitro and attenuated Aß uptake/clearance in mouse AD brain xenotransplants. Using this modeling and analysis platform for human microglia, we provide new insight into epistatic interactions in AD genes and demonstrate convergence of microglial AD genes at the APOE locus.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Variação Genética , Células-Tronco Embrionárias Humanas/metabolismo , Microglia/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Marcação de Genes , Loci Gênicos , Humanos , Camundongos Transgênicos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fagocitose , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética , Transplante Heterólogo , Regulação para Cima/genética
9.
J Neurosci ; 40(31): 5908-5921, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601248

RESUMO

SORLA is a transmembrane trafficking protein associated with Alzheimer's disease risk. Although SORLA is abundantly expressed in neurons, physiological roles for SORLA remain unclear. Here, we show that cultured transgenic neurons overexpressing SORLA feature longer neurites, and accelerated neurite regeneration with wounding. Enhanced release of a soluble form of SORLA (sSORLA) is observed in transgenic mouse neurons overexpressing human SORLA, while purified sSORLA promotes neurite extension and regeneration. Phosphoproteomic analyses demonstrate enrichment of phosphoproteins related to the epidermal growth factor (EGFR)/ERK pathway in SORLA transgenic mouse hippocampus from both genders. sSORLA coprecipitates with EGFR in vitro, and sSORLA treatment increases EGFR Y1173 phosphorylation, which is involved in ERK activation in cultured neurons. Furthermore, sSORLA triggers ERK activation, whereas pharmacological EGFR or ERK inhibition reverses sSORLA-dependent enhancement of neurite outgrowth. In search for downstream ERK effectors activated by sSORLA, we identified upregulation of Fos expression in hippocampus from male mice overexpressing SORLA by RNAseq analysis. We also found that Fos is upregulated and translocates to the nucleus in an ERK-dependent manner in neurons treated with sSORLA. Together, these results demonstrate that sSORLA is an EGFR-interacting protein that activates EGFR/ERK/Fos signaling to enhance neurite outgrowth and regeneration.SIGNIFICANCE STATEMENT SORLA is a transmembrane trafficking protein previously known to reduce the levels of amyloid-ß, which is critical in the pathogenesis of Alzheimer's disease. In addition, SORLA mutations are a risk factor for Alzheimer's disease. Interestingly, the SORLA ectodomain is cleaved into a soluble form, sSORLA, which has been shown to regulate cytoskeletal signaling pathways and cell motility in cells outside the nervous system. We show here that sSORLA binds and activates the EGF receptor to induce downstream signaling through the ERK serine/threonine kinase and the Fos transcription factor, thereby enhancing neurite outgrowth. These findings reveal a novel role for sSORLA in promoting neurite regeneration through the EGF receptor/ERK/Fos pathway, thereby demonstrating a potential neuroprotective mechanism involving SORLA.


Assuntos
Receptores ErbB/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Regeneração Nervosa/fisiologia , Neuritos/fisiologia , Receptores de LDL/fisiologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Genes fos , Hipocampo/fisiologia , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fosforilação , Receptores de LDL/genética
10.
Nat Neurosci ; 23(5): 615-624, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284607

RESUMO

Hexanucleotide expansions in C9orf72, which encodes a predicted guanine exchange factor, are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although repeat expansion has been established to generate toxic products, mRNAs encoding the C9ORF72 protein are also reduced in affected individuals. In this study, we tested how C9ORF72 protein levels affected repeat-mediated toxicity. In somatic transgenic mice expressing 66 GGGGCC repeats, inactivation of one or both endogenous C9orf72 alleles provoked or accelerated, respectively, early death. In mice expressing a C9orf72 transgene with 450 repeats that did not encode the C9ORF72 protein, inactivation of one or both endogenous C9orf72 alleles exacerbated cognitive deficits, hippocampal neuron loss, glial activation and accumulation of dipeptide-repeat proteins from translation of repeat-containing RNAs. Reduced C9ORF72 was shown to suppress repeat-mediated elevation in autophagy. These efforts support a disease mechanism in ALS/FTD resulting from reduced C9ORF72, which can lead to autophagy deficits, synergizing with repeat-dependent gain of toxicity.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Animais , Expansão das Repetições de DNA/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
J Clin Invest ; 129(8): 3103-3120, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112137

RESUMO

Mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are yet unclear. Specific deletion of the ER-component membralin in astrocytes manifested postnatal motor defects and lethality in mice, causing the accumulation of extracellular glutamate through reducing the glutamate transporter EAAT2. Restoring EAAT2 levels in membralin KO astrocytes limited astrocyte-dependent excitotoxicity in motor neurons. Transcriptomic profiles from mouse astrocytic membralin KO motor cortex indicated significant perturbation in KEGG pathway components related to ALS, including downregulation of Eaat2 and upregulation of Tnfrsf1a. Changes in gene expression with membralin deletion also overlapped with mouse ALS models and reactive astrocytes. Our results shown that activation of TNF receptor (TNFR1)-NFκB pathway known to suppress Eaat2 transcription was upregulated with membralin deletion. Further, reduced membralin and EAAT2 levels correlated with disease progression in spinal cord from SOD1-mutant mouse models, and reductions in membralin/EAAT2 were observed in human ALS spinal cord. Importantly, overexpression of membralin in SOD1G93A astrocytes decreased TNFR1 levels and increased EAAT2 expression, and improved motor neuron survival. Importantly, upregulation of membralin in SOD1G93A mice significantly prolonged mouse survival. Together, our study provided a mechanism for ALS pathogenesis where membralin limited glutamatergic neurotoxicity, suggesting that modulating membralin had potentials in ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Córtex Motor/metabolismo , Proteínas do Tecido Nervoso/deficiência , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/genética , Humanos , Camundongos , Camundongos Knockout , Córtex Motor/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Transcrição Gênica , Regulação para Cima
12.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30054395

RESUMO

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Assuntos
Dano ao DNA/fisiologia , Neurônios Motores/enzimologia , Proteína-Arginina N-Metiltransferases/fisiologia , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Contração Isométrica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células Musculares/enzimologia , Células Musculares/fisiologia , Junção Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/deficiência , Proteína-Arginina N-Metiltransferases/genética , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Reflexo Anormal , Teste de Desempenho do Rota-Rod , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento
13.
Neuron ; 97(5): 1023-1031.e7, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518356

RESUMO

Mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to increased Alzheimer's disease (AD) risk. Neurobiological functions of TREM2 and its pathophysiological ligands remain elusive. Here we found that TREM2 directly binds to ß-amyloid (Aß) oligomers with nanomolar affinity, whereas AD-associated TREM2 mutations reduce Aß binding. TREM2 deficiency impairs Aß degradation in primary microglial culture and mouse brain. Aß-induced microglial depolarization, K+ inward current induction, cytokine expression and secretion, migration, proliferation, apoptosis, and morphological changes are dependent on TREM2. In addition, TREM2 interaction with its signaling adaptor DAP12 is enhanced by Aß, regulating downstream phosphorylation of SYK and GSK3ß. Our data demonstrate TREM2 as a microglial Aß receptor transducing physiological and AD-related pathological effects associated with Aß.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Receptores Imunológicos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Método Duplo-Cego , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/patologia , Ligação Proteica/fisiologia
14.
Neuron ; 97(5): 1032-1048.e5, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518357

RESUMO

Variants of TREM2 are associated with Alzheimer's disease (AD). To study whether increasing TREM2 gene dosage could modify the disease pathogenesis, we developed BAC transgenic mice expressing human TREM2 (BAC-TREM2) in microglia. We found that elevated TREM2 expression reduced amyloid burden in the 5xFAD mouse model. Transcriptomic profiling demonstrated that increasing TREM2 levels conferred a rescuing effect, which includes dampening the expression of multiple disease-associated microglial genes and augmenting downregulated neuronal genes. Interestingly, 5xFAD/BAC-TREM2 mice showed further upregulation of several reactive microglial genes linked to phagocytosis and negative regulation of immune cell activation. Moreover, these mice showed enhanced process ramification and phagocytic marker expression in plaque-associated microglia and reduced neuritic dystrophy. Finally, elevated TREM2 gene dosage led to improved memory performance in AD models. In summary, our study shows that a genomic transgene-driven increase in TREM2 expression reprograms microglia responsivity and ameliorates neuropathological and behavioral deficits in AD mouse models.


Assuntos
Doença de Alzheimer/genética , Modelos Animais de Doenças , Dosagem de Genes/genética , Glicoproteínas de Membrana/genética , Microglia/fisiologia , Fenótipo , Receptores Imunológicos/genética , Doença de Alzheimer/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Reprogramação Celular/métodos , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/biossíntese , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Técnicas de Cultura de Órgãos , Receptores Imunológicos/biossíntese
15.
J Exp Med ; 214(12): 3669-3685, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29114064

RESUMO

Sortilin-related receptor with LDLR class A repeats (SORLA, SORL1, or LR11) is a genetic risk factor associated with Alzheimer's disease (AD). Although SORLA is known to regulate trafficking of the amyloid ß (Aß) precursor protein to decrease levels of proteotoxic Aß oligomers, whether SORLA can counteract synaptic dysfunction induced by Aß oligomers remains unclear. Here, we show that SORLA interacts with the EphA4 receptor tyrosine kinase and attenuates ephrinA1 ligand-induced EphA4 clustering and activation to limit downstream effects of EphA4 signaling in neurons. Consistent with these findings, SORLA transgenic mice, compared with WT mice, exhibit decreased EphA4 activation and redistribution to postsynaptic densities, with milder deficits in long-term potentiation and memory induced by Aß oligomers. Importantly, we detected elevated levels of active EphA4 in human AD brains, where EphA4 activation is inversely correlated with SORLA/EphA4 association. These results demonstrate a novel role for SORLA as a physiological and pathological EphA4 modulator, which attenuates synaptotoxic EphA4 activation and cognitive impairment associated with Aß-induced neurodegeneration in AD.


Assuntos
Precursor de Proteína beta-Amiloide/toxicidade , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Degeneração Neural/patologia , Receptor EphA4/metabolismo , Receptores de LDL/metabolismo , Doença de Alzheimer/patologia , Animais , Efrinas/farmacologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Ligantes , Potenciação de Longa Duração/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação/genética , Degeneração Neural/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Receptores de LDL/química , Receptores de LDL/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
16.
Nat Commun ; 8(1): 1472, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133892

RESUMO

Endoplasmic-reticulum-associated degradation (ERAD) is an important protein quality control system which maintains protein homeostasis. Constituents of the ERAD complex and its role in neurodegeneration are not yet fully understood. Here, using proteomic and FRET analyses, we demonstrate that the ER protein membralin is an ERAD component, which mediates degradation of ER luminal and membrane substrates. Interestingly, we identify nicastrin, a key component of the γ-secretase complex, as a membralin binding protein and membralin-associated ERAD substrate. We demonstrate a reduction of membralin mRNA and protein levels in Alzheimer's disease (AD) brain, the latter of which inversely correlates with nicastrin abundance. Furthermore, membralin deficiency enhances γ-secretase activity and neuronal degeneration. In a mouse AD model, downregulating membralin results in ß-amyloid pathology, neuronal death, and exacerbates synaptic/memory deficits. Our results identify membralin as an ERAD component and demonstrate a critical role for ERAD in AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Disfunção Cognitiva/patologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/fisiologia , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Dobramento de Proteína , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
17.
Exp Mol Med ; 49(12): e405, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29611543

RESUMO

Genetic mutations in triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to a variety of neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Parkinson's disease. In the brain, TREM2 is highly expressed on the cell surface of microglia, where it can transduce signals to regulate microglial functions such as phagocytosis. To date, mechanisms underlying intracellular trafficking of TREM2 remain elusive. Mutations in the presenilin 1 (PS1) catalytic subunit of the γ-secretase complex have been associated with increased generation of the amyloidogenic Aß (amyloid-ß) 42 peptide through cleavage of the Aß precursor amyloid precursor protein. Here we found that TREM2 interacts with PS1 in a manner independent of γ-secretase activity. Mutations in TREM2 alter its subcellular localization and affects its interaction with PS1. Upregulation of PS1 reduces, whereas downregulation of PS1 increases, steady-state levels of cell surface TREM2. Furthermore, PS1 overexpression results in attenuated phagocytic uptake of Aß by microglia, which is reversed by TREM2 overexpression. Our data indicate a novel role for PS1 in regulating TREM2 intracellular trafficking and pathophysiological function.


Assuntos
Glicoproteínas de Membrana/metabolismo , Presenilina-1/metabolismo , Receptores Imunológicos/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Biotinilação , Linhagem Celular , Células HEK293 , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/genética , Camundongos , Mutação/genética , Fagocitose/genética , Fagocitose/fisiologia , Presenilina-1/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...