Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 267: 116117, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295689

RESUMO

Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.


Assuntos
Descoberta de Drogas , Neoplasias , Humanos , Autofagia , Neoplasias/metabolismo , Desenho de Fármacos , Transdução de Sinais
2.
World J Surg Oncol ; 21(1): 93, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907878

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Homeobox D9 (HOXD9), a member of the HOX family of transcription factors, plays a driver role in development of multiple cancers. Angiopoietin-2 (ANGPT2) is reportedly to facilitate angiogenesis, growth and metastasis in various cancers, including lung cancer. In addition, blocking ANGPT2 can effectively improve cancer immunotherapy via downregulation of Programmed death ligand-1 (PD-L1). The purpose of this study was to elucidate the role of HOXD9 in NSCLC and whether ANGPT2 is required for HOXD9-mediated malignant behaviors of NSCLC cells. By performing a series of in vitro functional experiments, we found that knockdown of HOXD9 induced proliferative inhibition, cell cycle G1 arrest, apoptosis, migratory suppression and invasive repression of NSCLC cells. Reduced PD-L1 expression in NSCLC cells was observed after HOXD9 silencing. Besides, HOXD9 deletion decreased the expression of ANGPT2 in NSCLC cells. In line with this, HOXD9 overexpression led to opposite alteration in NSCLC cells. Mechanistically, ANGPT2 was transcriptionally activated by HOXD9. Forced expression of ANGPT2 significantly regulated HOXD9-mediated malignant phenotypes, and enhanced PD-L1 expression of NSCLC cells. Our results expressing HOXD9 may function as an oncogene in NSCLC via trans-activation of ANGPT2.


Assuntos
Angiopoietina-2 , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Proteínas de Homeodomínio , Neoplasias Pulmonares , Humanos , Angiopoietina-2/metabolismo , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Genes Homeobox , Neoplasias Pulmonares/patologia , Fenótipo , Proteínas de Homeodomínio/metabolismo , Regiões Promotoras Genéticas
3.
Eur J Pharm Sci ; 179: 106276, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35977652

RESUMO

Certain ruthenium compounds are found to be potent growth inhibitors for cancer cells. In the current study, a novel ruthenium-triphenylphosphine (PPh3) cation and silver-2-mercapto nicotinate acid (H2mna) anion complex (RSC) was synthesized, and its molecular structure was determined by IR, NMR and X-ray crystallography. Biological assays revealed that RSC strongly inhibited the viability of MCF-7 and MDA-MB-231 cells with IC50 values of 9.6±1.1 and 7.5±0.8 µM, respectively, and significantly blocked their migration rates. Ultraviolet spectroscopy and fluorescence emission experiments demonstrated that RSC interacted with BSA, but not DNA. Further studies on [Ag6(Hmna)2(mna)4]4- binding with BSA and DNA found the anion did not interact with these biomolecules, indicating that RSC exerted its biological functions through its ruthenium-PPh3 complex (RTC) moiety, and molecular docking provided additional evidence supporting this result. Fluorescence resonance energy transfer showed that the number of binding sites (n) and binding constant of RTC-BSA complex were 1 and 8.60 × 104 M-1 at 310K, suggesting a strong interaction between RTC and BSA. The thermodynamic parameters ΔG0, ΔH0 and ΔS0 of the binding were calculated, and it was demonstrated that the binding of RTC with BSA was enthalpy-driven, and the main forces between RTC and BSA were electrostatic force and hydrogen bonding. Molecular docking showed that the binding site of BSA with RSC was located on the interface between the domains IIA and IIB of the protein. The present study sheds light on that a ruthenium mono-coordinated with PPh3 complex could help to design and develop a new class of antitumor drugs.


Assuntos
Antineoplásicos , Rutênio , Simulação de Acoplamento Molecular , Prata , Soroalbumina Bovina/química , Sítios de Ligação , Antineoplásicos/farmacologia , Antineoplásicos/química , Termodinâmica , DNA , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
4.
Front Optoelectron ; 15(1): 21, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36637548

RESUMO

Simultaneously realizing the optical and electrical properties of organic materials is always challenging. Herein, a convenient and promising strategy for designing organic materials with integrated optoelectronic properties based on cocrystal engineering has been put forward. By selecting the fluorene (Flu) and the 7,7',8,8'-tetracyanoquinodimethane (TCNQ) as functional constituents, the Flu-TCNQ cocrystal prepared shows deep red emission at 702 nm, which is comparable to the commercialized red quantum dot. The highest electron mobility of organic field-effect transistor (OFET) based on Flu-TCNQ is 0.32 cm2 V-1 s-1. Spectroscopic analysis indicates that the intermolecular driving force contributing to the co-assembly of Flu-TCNQ is mainly charge transfer (CT) interaction, which leads to its different optoelectronic properties from constituents.

5.
Front Chem ; 9: 764628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957044

RESUMO

Cocrystal engineering is an advanced supramolecular strategy that has attracted a lot of research interest. Many studies on cocrystals in various application fields have been reported, with a particular focus on the optoelectronics field. However, few articles have combined and summarized the electronic and magnetic properties of cocrystals. In this review, we first introduce the growth methods that serve as the basis for realizing the different properties of cocrystals. Thereafter, we present an overview of cocrystal applications in electronic and magnetic fields. Some functional devices based on cocrystals are also introduced. We hope that this review will provide researchers with a more comprehensive understanding of the latest progress and prospects of cocrystals in electronic and magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...