Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401478, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528390

RESUMO

Constructing a porous structure is considered an appealing strategy to improve the electrochemical properties of carbon anodes for potassium-ion batteries (PIBs). Nevertheless, the correlation between electrochemical K-storage performance and pore structure has not been well elucidated, which hinders the development of high-performance carbon anodes. Herein, various porous carbons are synthesized with porosity structures ranging from micropores to micro/mesopores and mesopores, and systematic investigations are conducted to establish a relationship between pore characteristics and K-storage performance. It is found that micropores fail to afford accessible active sites for K ion storage, whereas mesopores can provide abundant surface adsorption sites, and the enlarged interlayer spacing facilitates the intercalation process, thus resulting in significantly improved K-storage performances. Consequently, PCa electrode with a prominent mesoporous structure achieves the highest reversible capacity of 421.7 mAh g-1 and an excellent rate capability of 191.8 mAh g-1 at 5 C. Furthermore, the assembled potassium-ion hybrid capacitor realizes an impressive energy density of 151.7 Wh kg-1 at a power density of 398 W kg-1. The proposed work not only deepens the understanding of potassium storage in carbon materials with distinctive porosities but also paves a path toward developing high-performance anodes for PIBs with customized energy storage capabilities.

2.
Small Methods ; 7(11): e2300708, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605458

RESUMO

Potassium-ion batteries (KIBs) have recently attracted considerable attention owing to their resource abundance, low cost and environmental friendliness. Graphite as a mature commercial anode material for lithium-ion batteries, has been proved as a promising anode candidate for KIBs by reversible forming potassium-graphite intercalation compounds. However, large volume expansion and sluggish K+ kinetics caused by the incompatibility between large radius of K+ and the small interlayer spacing of graphite, result in the poor cycle stability and rate performances, hindering its practical application. Extensive research efforts have focused on improving the potassium storage performance of graphite anodes. This review provides an overview of recent advances in addressing these challenges and optimizing the electrochemical performance of graphite anodes for KIBs. Various strategies to improve the electrochemical performance of graphite and graphitic carbon anodes, such as microcrystalline regulation, heteroatom doping, morphological adjustment, and coating modification, are discussed, while the critical issues and challenges associated with graphite anodes and the prospects for their advancement in KIBs are highlighted. The review offers valuable guidelines for rational structural design and promotes the commercial development of high-performance graphite anode materials for KIBs.

3.
J Colloid Interface Sci ; 630(Pt A): 365-374, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265338

RESUMO

Bismuth-based materials are regarded as promising anode materials for potassium ion batteries (PIBs) due to their high theoretical capacity and low working potential. However, the large volume expansion and sluggish kinetics during cycling are major limitations to their practical application. Herein, a unique Bi/Bi2O3-C heterostructure was designed through a simple Bi-metal-organic framework (MOF) modulation-pyrolysis process. X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray diffraction revealed that the Bi and Bi2O3 can form hetero-particles, which were uniformly embedded in a plate-like carbon skeleton, constructing a Bi/Bi2O3-C heterostructure. The carbon skeleton and the formation of numerous hetero-interfaces between Bi, Bi2O3, and carbon can effectively promote the interfacial charge transfer, shorten the K+ diffusion pathway, and alleviate the volume expansion of Bi/Bi2O3 during potassiation. Consequently, the Bi/Bi2O3-C heterostructure exhibited a high reversible capacity of 426.0 mAh g-1 at 50 mA g-1, excellent cycle performance of 251.8 mAh g-1 after 350 cycles with a capacity retention of 76.6 %, and superior rate capability of 82.7 mAh g-1 at 1 A g-1, demonstrating its promising potential for the application of PIBs anode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...