Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 35(11): 692-701, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38874969

RESUMO

OBJECTIVE: Diabetic neuropathic pain (DNP) is one of the most prevalent symptoms of diabetes. The alteration of proteins in the spinal cord dorsal horn (SCDH) plays a significant role in the genesis and the development of DNP. Our previous study has shown electroacupuncture could effectively relieve DNP. However, the potential mechanism inducing DNP's genesis and development remains unclear and needs further research. METHODS: This study established DNP model rats by intraperitoneally injecting a single high-dose streptozotocin; 2 Hz electroacupuncture was used to stimulate Zusanli (ST36) and Kunlun (BL60) of DNP rats daily from day 15 to day 21 after streptozotocin injection. Behavioral assay, quantitative PCR, immunofluorescence staining, and western blotting were used to study the analgesic mechanism of electroacupuncture. RESULTS: The bradykinin B1 receptor (B1R) mRNA, nuclear factor-κB p65 (p65), substance P, and calcitonin gene-related peptide (CGRP) protein expression were significantly enhanced in SCDH of DNP rats. The paw withdrawal threshold was increased while body weight and fasting blood glucose did not change in DNP rats after the electroacupuncture treatment. The expression of B1R, p65, substance P, and CGRP in SCDH of DNP rats was also inhibited after the electroacupuncture treatment. CONCLUSION: This work suggests that the potential mechanisms inducing the allodynia of DNP rats were possibly related to the increased expression of B1R, p65, substance P, and CGRP in SCDH. Downregulating B1R, p65, substance P, and CGRP expression levels in SCDH may achieve the analgesic effect of 2 Hz electroacupuncture treatment.


Assuntos
Diabetes Mellitus Experimental , Regulação para Baixo , Eletroacupuntura , Hiperalgesia , Ratos Sprague-Dawley , Receptor B1 da Bradicinina , Corno Dorsal da Medula Espinal , Animais , Eletroacupuntura/métodos , Masculino , Corno Dorsal da Medula Espinal/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Receptor B1 da Bradicinina/metabolismo , Receptor B1 da Bradicinina/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/terapia , Ratos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Substância P/metabolismo
2.
PeerJ ; 11: e16625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099302

RESUMO

Background: A critical aspect of in silico drug discovery involves the prediction of drug-target affinity (DTA). Conducting wet lab experiments to determine affinity is both expensive and time-consuming, making it necessary to find alternative approaches. In recent years, deep learning has emerged as a promising technique for DTA prediction, leveraging the substantial computational power of modern computers. Methods: We proposed a novel sequence-based approach, named KC-DTA, for predicting drug-target affinity (DTA). In this approach, we converted the target sequence into two distinct matrices, while representing the molecule compound as a graph. The proposed method utilized k-mers analysis and Cartesian product calculation to capture the interactions and evolutionary information among various residues, enabling the creation of the two matrices for target sequence. For molecule, it was represented by constructing a molecular graph where atoms serve as nodes and chemical bonds serve as edges. Subsequently, the obtained target matrices and molecule graph were utilized as inputs for convolutional neural networks (CNNs) and graph neural networks (GNNs) to extract hidden features, which were further used for the prediction of binding affinity. Results: In order to evaluate the effectiveness of the proposed method, we conducted several experiments and made a comprehensive comparison with the state-of-the-art approaches using multiple evaluation metrics. The results of our experiments demonstrated that the KC-DTA method achieves high performance in predicting drug-target affinity (DTA). The findings of this research underscore the significance of the KC-DTA method as a valuable tool in the field of in silico drug discovery, offering promising opportunities for accelerating the drug development process. All the data and code are available for access on https://github.com/syc2017/KCDTA.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Benchmarking , Evolução Biológica , Sistemas de Liberação de Medicamentos
3.
IEEE J Biomed Health Inform ; 27(4): 2128-2137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018115

RESUMO

Predicting drug-target affinity (DTA) is a crucial step in the process of drug discovery. Efficient and accurate prediction of DTA would greatly reduce the time and economic cost of new drug development, which has encouraged the emergence of a large number of deep learning-based DTA prediction methods. In terms of the representation of target proteins, current methods can be classified into 1D sequence- and 2D-protein graph-based methods. However, both two approaches focused only on the inherent properties of the target protein, but neglected the broad prior knowledge regarding protein interactions that have been clearly elucidated in past decades. Aiming at the above issue, this work presents an end-to-end DTA prediction method named MSF-DTA (Multi-Source Feature Fusion-based Drug-Target Affinity). The contributions can be summarized as follows. First, MSF-DTA adopts a novel "neighboring feature"-based protein representation. Instead of utilizing only the inherent features of a target protein, MSF-DTA gathers additional information for the target protein from its biologically related "neighboring" proteins in PPI (i.e., protein-protein interaction) and SSN (i.e., sequence similarity) networks to get prior knowledge. Second, the representation was learned using an advanced graph pre-training framework, VGAE, which could not only gather node features but also learn topological connections, therefore contributing to a richer protein representation and benefiting the downstream DTA prediction task. This study provides new perspective for the DTA prediction task, and evaluation results demonstrated that MSF-DTA obtained superior performances compared to current state-of-the-art methods.


Assuntos
Descoberta de Drogas , Conhecimento , Humanos
4.
NPJ Syst Biol Appl ; 8(1): 43, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333337

RESUMO

Short QT syndrome (SQTS) is a rare but dangerous genetic disease. In this research, we conducted a comprehensive in silico investigation into the arrhythmogenesis in KCNH2 T618I-associated SQTS using a multi-scale human ventricle model. A Markov chain model of IKr was developed firstly to reproduce the experimental observations. It was then incorporated into cell, tissue, and organ models to explore how the mutation provided substrates for ventricular arrhythmias. Using this T618I Markov model, we explicitly revealed the subcellular level functional alterations by T618I mutation, particularly the changes of ion channel states that are difficult to demonstrate in wet experiments. The following tissue and organ models also successfully reproduced the changed dynamics of reentrant spiral waves and impaired rate adaptions in hearts of T618I mutation. In terms of pharmacotherapy, we replicated the different effects of a drug under various conditions using identical mathematical descriptions for drugs. This study not only simulated the actions of an effective drug (quinidine) at various physiological levels, but also elucidated why the IKr inhibitor sotalol failed in SQT1 patients through profoundly analyzing its mutation-dependent actions.


Assuntos
Quinidina , Sotalol , Humanos , Quinidina/farmacologia , Quinidina/uso terapêutico , Sotalol/farmacologia , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Potenciais de Ação/genética , Mutação/genética , Canal de Potássio ERG1/genética
5.
Drug Discov Today ; 27(12): 103373, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167282

RESUMO

With advances in artificial intelligence (AI) methods, computer-aided drug design (CADD) has developed rapidly in recent years. Effective molecular representation and accurate property prediction are crucial tasks in CADD workflows. In this review, we summarize contemporary applications of deep learning (DL) methods for molecular representation and property prediction. We categorize DL methods according to the format of molecular data (1D, 2D, and 3D). In addition, we discuss some common DL models, such as ensemble learning and transfer learning, and analyze the interpretability methods for these models. We also highlight the challenges and opportunities of DL methods for molecular representation and property prediction.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Desenho de Fármacos
6.
J Chem Inf Model ; 62(17): 4008-4017, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36006049

RESUMO

The structure of a protein is of great importance in determining its functionality, and this characteristic can be leveraged to train data-driven prediction models. However, the limited number of available protein structures severely limits the performance of these models. AlphaFold2 and its open-source data set of predicted protein structures have provided a promising solution to this problem, and these predicted structures are expected to benefit the model performance by increasing the number of training samples. In this work, we constructed a new data set that acted as a benchmark and implemented a state-of-the-art structure-based approach for determining whether the performance of the function prediction model can be improved by putting additional AlphaFold-predicted structures into the training set and further compared the performance differences between two models separately trained with real structures only and AlphaFold-predicted structures only. Experimental results indicated that structure-based protein function prediction models could benefit from virtual training data consisting of AlphaFold-predicted structures. First, model performances were improved in all three categories of Gene Ontology terms (GO terms) after adding predicted structures as training samples. Second, the model trained only on AlphaFold-predicted virtual samples achieved comparable performances to the model based on experimentally solved real structures, suggesting that predicted structures were almost equally effective in predicting protein functionality.


Assuntos
Proteínas , Proteínas/química
7.
BMC Genomics ; 23(1): 449, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715739

RESUMO

BACKGROUND: Affinity prediction between molecule and protein is an important step of virtual screening, which is usually called drug-target affinity (DTA) prediction. Its accuracy directly influences the progress of drug development. Sequence-based drug-target affinity prediction can predict the affinity according to protein sequence, which is fast and can be applied to large datasets. However, due to the lack of protein structure information, the accuracy needs to be improved. RESULTS: The proposed model which is called WGNN-DTA can be competent in drug-target affinity (DTA) and compound-protein interaction (CPI) prediction tasks. Various experiments are designed to verify the performance of the proposed method in different scenarios, which proves that WGNN-DTA has the advantages of simplicity and high accuracy. Moreover, because it does not need complex steps such as multiple sequence alignment (MSA), it has fast execution speed, and can be suitable for the screening of large databases. CONCLUSION: We construct protein and molecular graphs through sequence and SMILES that can effectively reflect their structures. To utilize the detail contact information of protein, graph neural network is used to extract features and predict the binding affinity based on the graphs, which is called weighted graph neural networks drug-target affinity predictor (WGNN-DTA). The proposed method has the advantages of simplicity and high accuracy.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Desenvolvimento de Medicamentos , Proteínas/química , Alinhamento de Sequência
8.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35039853

RESUMO

Deep learning shortens the cycle of the drug discovery for its success in extracting features of molecules and proteins. Generating new molecules with deep learning methods could enlarge the molecule space and obtain molecules with specific properties. However, it is also a challenging task considering that the connections between atoms are constrained by chemical rules. Aiming at generating and optimizing new valid molecules, this article proposed Molecular Substructure Tree Generative Model, in which the molecule is generated by adding substructure gradually. The proposed model is based on the Variational Auto-Encoder architecture, which uses the encoder to map molecules to the latent vector space, and then builds an autoregressive generative model as a decoder to generate new molecules from Gaussian distribution. At the same time, for the molecular optimization task, a molecular optimization model based on CycleGAN was constructed. Experiments showed that the model could generate valid and novel molecules, and the optimized model effectively improves the molecular properties.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Descoberta de Drogas
9.
Biomolecules ; 11(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34439785

RESUMO

In the process of drug discovery, identifying the interaction between the protein and the novel compound plays an important role. With the development of technology, deep learning methods have shown excellent performance in various situations. However, the compound-protein interaction is complicated and the features extracted by most deep models are not comprehensive, which limits the performance to a certain extent. In this paper, we proposed a multiscale convolutional network that extracted the local and global features of the protein and the topological feature of the compound using different types of convolutional networks. The results showed that our model obtained the best performance compared with the existing deep learning methods.


Assuntos
Aprendizado Profundo , Descoberta de Drogas/métodos , Drogas em Investigação/química , Ensaios de Triagem em Larga Escala , Proteínas/química , Sítios de Ligação , Conjuntos de Dados como Assunto , Drogas em Investigação/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo , Proteínas/ultraestrutura
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445696

RESUMO

The prediction of drug-target affinity (DTA) is a crucial step for drug screening and discovery. In this study, a new graph-based prediction model named SAG-DTA (self-attention graph drug-target affinity) was implemented. Unlike previous graph-based methods, the proposed model utilized self-attention mechanisms on the drug molecular graph to obtain effective representations of drugs for DTA prediction. Features of each atom node in the molecular graph were weighted using an attention score before being aggregated as molecule representation. Various self-attention scoring methods were compared in this study. In addition, two pooing architectures, namely, global and hierarchical architectures, were presented and evaluated on benchmark datasets. Results of comparative experiments on both regression and binary classification tasks showed that SAG-DTA was superior to previous sequence-based or other graph-based methods and exhibited good generalization ability.


Assuntos
Desenvolvimento de Medicamentos/métodos , Previsões/métodos , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Teóricos , Redes Neurais de Computação , Preparações Farmacêuticas
11.
RSC Adv ; 10(35): 20701-20712, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517730

RESUMO

Computer-aided drug design uses high-performance computers to simulate the tasks in drug design, which is a promising research area. Drug-target affinity (DTA) prediction is the most important step of computer-aided drug design, which could speed up drug development and reduce resource consumption. With the development of deep learning, the introduction of deep learning to DTA prediction and improving the accuracy have become a focus of research. In this paper, utilizing the structural information of molecules and proteins, two graphs of drug molecules and proteins are built up respectively. Graph neural networks are introduced to obtain their representations, and a method called DGraphDTA is proposed for DTA prediction. Specifically, the protein graph is constructed based on the contact map output from the prediction method, which could predict the structural characteristics of the protein according to its sequence. It can be seen from the test of various metrics on benchmark datasets that the method proposed in this paper has strong robustness and generalizability.

12.
J Mol Graph Model ; 93: 107454, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31581063

RESUMO

Prediction of binding affinity of proteins and small molecules is a key step in drug design, and the location of binding sites is crucial for affinity prediction and molecular docking. In order to improve the accuracy of binding site prediction, a method called FRSite which improves the Faster R-CNN for protein binding site prediction is proposed in this paper. Multi-channel descriptors for proteins are generated to three dimensional (3D) girds and fed into the proposed Region Proposal Network (RPN-3D) network for potential proposals detection. Moreover, a 3D classifier is used to predict the bounding box of the binding site for a protein, and could also predict the center and size of the site. It can be seen from our comparative experiments that the proposed method can assist drug design.


Assuntos
Proteínas/química , Sítios de Ligação , Desenho de Fármacos , Simulação de Acoplamento Molecular , Redes Neurais de Computação
13.
Molecules ; 24(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533341

RESUMO

Molecular toxicity prediction is one of the key studies in drug design. In this paper, a deep learning network based on a two-dimension grid of molecules is proposed to predict toxicity. At first, the van der Waals force and hydrogen bond were calculated according to different descriptors of molecules, and multi-channel grids were generated, which could discover more detail and helpful molecular information for toxicity prediction. The generated grids were fed into a convolutional neural network to obtain the result. A Tox21 dataset was used for the evaluation. This dataset contains more than 12,000 molecules. It can be seen from the experiment that the proposed method performs better compared to other traditional deep learning and machine learning methods.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade , Algoritmos , Interpretação Estatística de Dados , Estrutura Molecular
14.
BMC Bioinformatics ; 20(1): 478, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533611

RESUMO

BACKGROUND: Binding sites are the pockets of proteins that can bind drugs; the discovery of these pockets is a critical step in drug design. With the help of computers, protein pockets prediction can save manpower and financial resources. RESULTS: In this paper, a novel protein descriptor for the prediction of binding sites is proposed. Information on non-bonded interactions in the three-dimensional structure of a protein is captured by a combination of geometry-based and energy-based methods. Moreover, due to the rapid development of deep learning, all binding features are extracted to generate three-dimensional grids that are fed into a convolution neural network. Two datasets were introduced into the experiment. The sc-PDB dataset was used for descriptor extraction and binding site prediction, and the PDBbind dataset was used only for testing and verification of the generalization of the method. The comparison with previous methods shows that the proposed descriptor is effective in predicting the binding sites. CONCLUSIONS: A new protein descriptor is proposed for the prediction of the drug binding sites of proteins. This method combines the three-dimensional structure of a protein and non-bonded interactions with small molecules to involve important factors influencing the formation of binding site. Analysis of the experiments indicates that the descriptor is robust for site prediction.


Assuntos
Sítios de Ligação/fisiologia , Desenho de Fármacos , Proteínas/química
15.
J Chem Inf Model ; 59(9): 3817-3828, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31438677

RESUMO

Accurate prediction of molecular properties is important for new compound design, which is a crucial step in drug discovery. In this paper, molecular graph data is utilized for property prediction based on graph convolution neural networks. In addition, a convolution spatial graph embedding layer (C-SGEL) is introduced to retain the spatial connection information on molecules. And, multiple C-SGELs are stacked to construct a convolution spatial graph embedding network (C-SGEN) for end-to-end representation learning. In order to enhance the robustness of the network, molecular fingerprints are also combined with C-SGEN to build a composite model for predicting molecular properties. Our comparative experiments have shown that our method is accurate and achieves the best results on some open benchmark datasets.


Assuntos
Gráficos por Computador , Descoberta de Drogas , Informática/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...