Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Biomater ; 11: rbae043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779348

RESUMO

The incidence of intrauterine adhesions (IUA) has increased with the rising utilization of intrauterine surgery. The postoperative physical barrier methods commonly used, such as balloons and other fillers, have limited effectiveness and may even cause further damage to the remaining endometrial tissue. Herein, we developed an injectable thermosensitive hydrogel using Pluronic F127/F68 as pharmaceutical excipients and curcumin as a natural active molecule. The hydrogel effectively addresses solubility and low bioavailability issues associated with curcumin. In vitro, drug release assays revealed that the amorphous curcumin hydrogel promotes dissolution and sustained release of curcumin. In vitro experiments reveal high biocompatibility of the hydrogel and its ability to enhance vascular formation while inhibiting the expression of fibrotic factor TGF-ß1. To assess the effectiveness of preventing IUAs, in vivo experiments were conducted using IUA rats and compared with a class III medical device, a new-crosslinked hyaluronic acid (NCHA) gel. According to the study, curcumin hydrogel is more effective than the NCHA group in improving the regeneration of the endometrium, increasing the blood supply to the endometrium and reducing the abnormal deposition of fibrin, thus preventing IUA more effectively. This study provides a promising strategy for treating and preventing IUA.

2.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647653

RESUMO

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Assuntos
Cálcio , Doxorrubicina , Liberação Controlada de Fármacos , Glutationa , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Animais , Camundongos , Lipossomos/química , Humanos , Cálcio/química , Cálcio/metabolismo , Glutationa/química , Feminino , Géis/química , Gelatina/química , Camundongos Nus , Nanopartículas/química , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos/métodos
3.
Life Sci ; 329: 121930, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454755

RESUMO

AIMS: Bacterial infection is a significant factor contributing to the deterioration of wounds, and the misuse of antibiotics has exacerbated bacterial resistance. Therefore, there is an urgent need to develop a novel antibacterial strategy to replace conventional therapies. This study aims to construct a self-activated cascade reaction nanozyme, f-FeNC@GOx, which triggers a cascade reaction in the presence of glucose. This cascade reaction generates highly toxic hydroxyl radicals (OH), thereby achieving the goal of eliminating bacteria and promoting wound healing. MATERIAL AND METHODS: In vitro antibacterial experiments, bacterial spread plate method, Live/Dead staining, and crystal violet staining were conducted to analyze the antibacterial ability and mechanism of f-FeNC@GOx. In vivo experiments, a mouse wound model was established, and H&E and Masson staining of wound tissues were performed to assess the antibacterial activity of the f-FeNC@GOx in vivo. KEY FINDINGS: The in vivo and in vitro experiments confirmed that f-FeNC@GOx exhibited significant antibacterial effect against both Staphylococcus aureus and Escherichia coli in the presence of glucose. Furthermore, it showed optimal wound healing performance in the wound models. SIGNIFICANCE: These findings suggested that f-FeNC@GOx was a novel and effective antibacterial nanomaterial, which provided a promising antibacterial strategy using nanoenzyme based cascade reaction.


Assuntos
Antibacterianos , Nanoestruturas , Animais , Camundongos , Antibacterianos/farmacologia , Modelos Animais de Doenças , Escherichia coli , Glucose , Cicatrização
4.
Int J Biol Macromol ; 232: 123413, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36708897

RESUMO

Wound infection by multidrug-resistant bacteria seriously threatens human life. Chronic wounds, with necrosis, persistent inflammation, and covered by hypoxic tissue, seriously hinder anti-infection treatments. Herein, we have developed a multifunctional hydrogel dressing with antibacterial activity in the hypoxia environment to promote wound healing. The hydrogel comprises Cypate-conjugated antimicrobial peptides (AMP-Cypates), liposome-encapsulated perfluorodecalin, and recombinant type III collagen. AMP-Cypates exhibited outstanding antibacterial activity, jointly achieved through antimicrobial peptide (AMP) activity, photothermal therapy (PTT), and photodynamic therapy (PDT). The perfluorodecalin liposomes act as the oxygen carrier to mitigate wound hypoxia condition and enhance the efficacy of PDT. The recombinant type III collagen in the hydrogel further promoted the healing of the wounds together with the eradication of bacterial infection. Taken together, the hydrogel dressing provides a platform for integrating multiple antimicrobial mechanisms for the rapid removal of bacterial infection and the healing of chronic wounds.


Assuntos
Anti-Infecciosos , Colágeno Tipo III , Humanos , Hidrogéis/farmacologia , Colágeno , Antibacterianos/farmacologia , Bandagens , Hipóxia , Lipossomos
5.
BMC Immunol ; 23(1): 60, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476273

RESUMO

BACKGROUND: The progression of acute-to-chronic atopic dermatitis is accompanied by multiple helper T-cell cytokine responses, but the mechanisms and relative importance of these changes remain unclear. There is no animal model for atopic dermatitis that recapitulates these cytokine responses. OBJECTIVE: We sought to build a novel mouse model for atopic dermatitis (AD) that recapitulates these helper T-cell responses and some dynamic changes in cytokine responses in the progression of AD. METHODS: Female BALB/c mice were subjected to the application of dinitrofluorobenzene (DNFB) and ovalbumin (OVA) to induce AD-like dermatitis. Skin lesions and serum were collected from mice in the acute and chronic phases to detect changes in cytokine responses and other features of AD. RESULTS: Combined application of DNFB and OVA successfully induced AD-like dermatitis and histological changes as well as epidermal barrier dysfunction. In the acute phase of AD-like dermatitis, Th2-associated cytokines were mainly increased in serum and skin lesions. In the chronic phase of AD-like dermatitis, Th2-associated cytokines were still highly expressed, while Th1- and Th17-associated cytokines were also gradually increased. Compared with the acute phase, the JAK-STAT signaling pathway was highly expressed in the chronic phase of AD-like dermatitis. CONCLUSION: The combined application of DNFB and OVA could be used to build a new mouse model for atopic dermatitis. This mouse model recapitulates the helper T-cell responses and some dynamic changes in cytokine responses in the progression of acute-to-chronic in human AD. The JAK-STAT signaling pathway plays a pivotal role in the chronicity of AD.


Assuntos
Dermatite Atópica , Humanos , Feminino , Camundongos , Animais , Dinitrofluorbenzeno , Ovalbumina , Dermatite Atópica/induzido quimicamente , Citocinas , Linfócitos T Auxiliares-Indutores
6.
Gels ; 8(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547283

RESUMO

Colorectal cancer (CRC) is the third leading cause of death from cancer in both men and women. Traditional CRC dosage forms deliver the drug to both desired and unwanted sites of drug action, resulting in a number of negative side effects. Chemotherapeutic and chemopreventive agents are being targeted and delivered directly to the colon and rectum using targeted oral drug delivery systems. The main challenge in successfully targeting drugs to the colon via the oral route is avoiding drug absorption/degradation in the stomach and small intestine before the dosage form reaches the colon. In this study, we employed biocompatible chalk to adsorb DOX, then mixed pectin and cross-linked with calcium ions to form PC-DOX gels. The presence of cross-linked pectin and chalk can provide dual protection for the drug, significantly reducing drug leakage in gastric acid. In vitro release results showed that the designed PC-DOX could achieve 68% colon delivery efficiency. In the simulated colon environment, the released semi-degradable chalk did not affect the uptake of doxorubicin by colon cancer cells. Finally, in vivo simulation experiments in mice showed that rationally designed PC-DOX could achieve the highest colonic delivery efficiency. Our strategy has great potential for application in the treatment of colon cancer.

7.
Gels ; 8(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36547343

RESUMO

Currently, nucleic acid preparations have gained much attention due to their unique working principle and application value. However, as macromolecular drugs, nucleic acid preparations have complex construction and poor stability. The current methods to promote stability face problems such as high cost and inconvenient operatios. In this study, the hydrophilic pharmaceutical excipient PEG was used to gelate nucleic acid preparations to avoid the random movements of liquid particles. The results showed that PEG gelation significantly improved the stability of PEI25K-based and liposome-based nucleic acid preparations, compared with nucleic acid preparations without PEG gelation. After being stored at 4 °C for 3 days, non-PEG gelled nucleic acid preparations almost lost transfection activity, while PEGylated preparations still maintained high transfection efficiency. Fluorescence experiments showed that this effect was caused by inhibiting particle aggregation. The method described in this study was simple and effective, and the materials used had good biocompatibility. It is believed that this study will contribute to the better development of gene therapy drugs.

8.
J Funct Biomater ; 13(4)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36547559

RESUMO

Oxidative stress initiated by reactive oxygen species (ROS) is the cause of many acquired or congenital skin diseases. Oral antioxidants or using topical antioxidants preparations may bring the nonspecific distribution of drugs or anaphylaxis due to repeated use. In this study, a biocompatible gene vector by cross-linking of chitosan-oligosaccharide (CSO) and N,N'-cystamine-bis-acrylamide (CBA) was synthesized (CSO-CBA), which could carry therapeutic genes into the skin, express functional proteins in epidermal cells, and play an efficient antioxidant effect. Infrared and 1H NMR spectrum data showed that CSO-CBA was successfully synthesized. Gel electrophoresis results showed that the gene could be successfully compressed by the carrier and can be released in a reducing environment. Hemolysis experiments showed that the carrier had good biocompatibility. Transdermal gene delivery experiments proved that the vector can bring genes into the skin, express functional proteins, and protect the skin from reactive oxygen species damage after 7 days of administration. Skin compatibility experiments show that our therapy is biocompatible. Our study provides a minimally invasive and painless, high-biocompatibility, and long-term effective treatment for skin damage caused by reactive oxygen species, which has a potential application.

9.
ACS Biomater Sci Eng ; 8(11): 5008-5017, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36300784

RESUMO

Worldwide antibiotic abuse accelerates the evolution of drug-resistant super bacteria, which goes against the war toward bacterial infection. Antibiotic-loaded nanoparticles as a typical form of nanomedicine hold great promise in combating bacterial infection, which requires the development of a suitable carrier. Tannic acid (TA) showed an inhibition effect on both Gram-positive and -negative strains; however, there are no reports on the development of antibacterial nanoformulations based on TA itself. We could get PTA NPs using a one-pot method, and their size and ζ-potential were characterized. Herein, we carefully tuned the polymerization of TA to give well-dispersed polytannic acid nanoparticles (PTA NPs) with a size of 100 nm. Moreover, our results demonstrated that PTA NPs showed enhanced antibacterial effects on both Gram-positive and -negative strains as compared to free TA. Especially, PTA NPs can preferably accelerate the healing of Staphylococcus-infected wounds. Based on its structure, we suggested that PTA NPs may have a similar property to polydopamine nanoparticles to offer high drug loading for potential combination therapy for extended application in bacterial infection management.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Taninos/farmacologia , Taninos/uso terapêutico , Taninos/química , Polimerização , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Nanopartículas/química , Bactérias
10.
Pharm Res ; 39(10): 2475-2486, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36008737

RESUMO

Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.


Assuntos
Medicamentos Genéricos , Ácidos Nucleicos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Terapia Genética/métodos , Microinjeções/métodos , Agulhas/efeitos adversos , Preparações Farmacêuticas , Pele
11.
Gels ; 8(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005109

RESUMO

BACKGROUND: Promising cancer chemotherapy requires the development of suitable drug delivery systems (DDSs). Previous research has indicated that a hydrogel is a powerful DDS for tumor therapy and holds great potential to offer a feasible method for cancer management. METHODS: In this study, glutathione-gellan gum conjugate (GSH-GG) was synthesized through chemical reaction. Doxorubicin hydrochloride (DOX) was loaded into GSH-GG to accomplish DOX-loaded GSH-GG. The properties, injectability, drug release, and in vitro and in vivo anticancer effects of DOX-loaded GSH-GG were tested. RESULTS: DOX-loaded GSH-GG showed a temperature-ion dual responsive gelling property with good viscosity, strength, and injectability at an optimized gel concentration of 1.5%. In addition, lower drug release was found under acidic conditions, offering beneficial long-acting drug release in the tumor microenvironment. DOX-loaded GSH-GG presented selective action by exerting substantially higher cytotoxicity on cancer cells (4T1) than on normal epithelial cells (L929), signifying the potential of complete inhibition of tumor progression, without affecting the health quality of the subjects. CONCLUSIONS: GSH-GG can be applied as a responsive gelling material for delivering DOX for promising cancer therapy.

12.
Int J Biol Macromol ; 217: 55-65, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35817243

RESUMO

Infection-induced chronic wounds cause prolonged pains, a high risk of amputation, and even increased mortality in immunocompromised patients. Here we report an antibacterial microneedle (MN) patch, which features high degradability in biological fluids and gelatinase-responsive release of an antibacterial photothermal peptide AMP-Cypate. We first synthesize gelatin nanoparticles (GNPs) and then conjugate the AMP-Cypate to afford composite AMP-Cypate@GNPs. The proteinaceous nanoparticles can responsively release AMP-Cypate in the presence of gelatinase, an enzyme secreted specifically by Staphylococcus aureus (S. aureus). AMP-Cypate@GNPs were then deposited in the tips of MNs fabricated by PVP and recombinant human type III collagen (Col III) to devise the antibacterial MN/AMP-Cypate@GNP patches. When applied to the infection site, MNs break through the epidermis and the stratum corneum, dissolve in the infected dermis, reach the bacterial colony or biofilm, release AMP-Cypate@GNPs, and exert a gelatinase-responsive photothermal therapy under near-infrared (NIR) irradiation to kill the pathogen S. aureus. In a rat model of staphylococcal infection-induced chronic wounds mimicking the condition of diabetic foot ulcer, the antibacterial MN/AMP-Cypate@GNP patches eradiated the bacterial infection and resulted in complete healing of the wounds, proving its potential application in the treatment of chronic wound infections and diabetic foot ulcers.


Assuntos
Pé Diabético , Nanopartículas , Infecções Estafilocócicas , Animais , Humanos , Ratos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doença Crônica , Gelatina , Gelatinases , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
13.
ACS Biomater Sci Eng ; 8(8): 3463-3472, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35771187

RESUMO

As the most common pathogen of community and nosocomial infection, the resistance of Staphylococcus aureus (S. aureus) to traditional antibiotics is still increasing with years. Although the potent antibacterial activity of antimicrobial peptides (AMPs) has been widely confirmed, the unpredictable cytotoxicity remains the biggest obstacle to their clinical application. The development of a targeted drug delivery system for S. aureus is a practical strategy to ameliorate the inherent limitations of AMPs. In this work, we constructed an AMP release nanogel (cypate-GNPs@Cy3-AMP, CGCA) of S. aureus infection microenvironment using gelatinase nanoparticles (GNPs) for toxicity control and bacterial clearance. Gelatinase present in the infected site degrades GNPs, thus releasing Cy3-AMP in situ to destroy bacterial cells. Cypate modified on the surface of GNPs supports CGCA to generate localized heat under near-infrared (NIR) laser irradiation, which together with AMPs could cause irreversible physical damage to bacteria. In addition, the encapsulation from GNPs not only effectively limited the toxicity of AMPs but also significantly promoted cell proliferation and migration in vitro. In the mouse infection model, CGCA also exhibited excellent effects of bacterial clearance and wound healing, providing a potential direction for the correct use of AMPs.


Assuntos
Peptídeos Antimicrobianos , Staphylococcus aureus , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Gelatinases/metabolismo , Gelatinases/farmacologia , Nanogéis , Staphylococcus aureus/metabolismo
14.
J Sep Sci ; 45(14): 2699-2707, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35544319

RESUMO

This study used capillary electrophoresis with fluorescence detection- and a partial-filling mode-based method for chiral separation of ofloxacin. The deoxyribonucleic acid oligonucleotides with different base sequences were studied as potential chiral selectors including deoxyribonucleic acid tetrahedron, G-quadruplex, and G-riched double-strand deoxyribonucleic acid. Under the optimized conditions, all the deoxyribonucleic acid chiral selectors exhibited excellent chiral separation capabilities with a resolution higher than 1.5. The electrophoretic behavior of the ofloxacin enantiomer might result from the intermediate conjugate with different stabilities between chiral selectors and analytes by a combination of the hydrogen bond and spatial recognition structure. Moreover, satisfactory repeatability regarding run-to-run and interday repeatability was obtained, and all the relative standard deviation values of migration times and resolutions were below 4% (n = 6). Conclusively, both spatial structure and arrangement of the G bases potentiated the chiral separation capability of deoxyribonucleic acid for ofloxacin enantiomer. This work offered a stepping stone for enantioseparation using deoxyribonucleic acid as chiral selectors.


Assuntos
Ofloxacino , Oligonucleotídeos , Eletroforese Capilar/métodos , Estereoisomerismo
15.
Gels ; 8(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621613

RESUMO

As a highly absorbent and hydrophobic material with a three-dimensional network structure, hydrogels are widely used in biomedical fields for their excellent biocompatibility, low immunogenicity, adjustable physicochemical properties, ability to encapsulate a variety of drugs, controllability, and degradability. Hydrogels can be used not only for wound dressings and tissue repair, but also as drug carriers for the treatment of tumors. As multifunctional hydrogels are the focus for many researchers, this review focuses on hydrogels for antitumor therapy, hydrogels for antibacterial therapy, and hydrogels for co-use in tumor therapy and bacterial infection. We highlighted the advantages and representative applications of hydrogels in these fields and also outlined the shortages and future orientations of this useful tool, which might give inspirations for future studies.

16.
J Biomed Nanotechnol ; 18(2): 571-580, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484743

RESUMO

Intranasal administration, which can bypass the blood-brain barrier (BBB), is widely recognized as a promising strategy for high-efficiency drug delivery to the brain. Herein, for the purpose of effectively delivering drugs to the brain via intranasal administration, glutathione (GSH)-modified gellan gum (GSH-GG) with ion/temperature dual responsive properties was synthesized and encapsulated on galanthamine hydrobromide (GH)-loaded liposomes (GH-Lipo) for effective GH delivery to the brain (GH-Lipo@GSH-GG). Our results demonstrated that GSH-GG greatly decreased the gelation temperature of GG from 44.0 °C to 22.1 °C without compromising its ion responsiveness. Moreover, GSH-GG had a good protection ability for GH-loaded liposomes without affecting its drug release. Most importantly, the finally obtained GH-Lipo@GSHGG showed acceptable targeted delivery of GH to the brain upon in vivo administration. Therefore, this formulation can be employed as a potential delivery system in nasal-to-brain delivery.


Assuntos
Hidrogéis , Lipossomos , Encéfalo , Glutationa , Polissacarídeos Bacterianos , Temperatura
17.
J Biomed Nanotechnol ; 18(2): 435-445, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484748

RESUMO

Gene vectors with high biocompatibility and transfection efficiency are critical for successful gene therapy. PEI 25K (Polyethyleneimine 25K) is a common polymeric gene vector that has been employed as a positive control material in gene transfection studies due to its good performance in endosome escape. PEI 25K's indegradability and abundance of positive charges, on the other hand, cause toxicity in cells, limiting its use. In this study, we developed the PEI-ER non-viral vector by adding an endoplasmic reticulum (ER) targeting ligand to low molecular weight PEI 1.8K. These small molecule modifications dramatically improved PEI transfection efficiency while barely interfering with compatibility. PEI-ER/DNA complexes were discovered to enter the cell via caveolin-mediated endocytosis, avoiding destruction in the endosome. We believe that this little chemical alteration is a simple solution to enhance the efficacy of cationic polymer vectors in gene transport, and it has a lot of medicinal applications.


Assuntos
Polietilenoimina , Polímeros , DNA/química , DNA/genética , Vetores Genéticos/genética , Polietilenoimina/química , Transfecção
18.
Mol Pharm ; 19(5): 1647-1655, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35349292

RESUMO

One of the most significant barriers to the clinical transformation of nanomedicines is low drug distribution in solid tumors due to quick clearance of nanomedicine after injection. Studies have revealed that the distribution of nanomedicine in tumor sites can be considerably improved when the number of nanoparticles supplied in a short period surpasses the threshold. Most routinely employed nanomaterials have dose-related safety concerns. To resolve this problem, we use highly biocompatible albumin to construct blank nanoparticles and doxorubicin loading nanoparticles. Under the guidance of the threshold theory, when the quantity of drug loading nanoparticles is constant, the drug delivery effectiveness improves with the addition of blank nanoparticles. This enhanced impact was verified both in vitro and in vivo. The area under the curve of the high dose group (19.5 × 1011) is 2.5 times higher than that of the low dose group (6.5 × 1011). In addition, the drug distribution of the high dose group at the tumor site was also improved by 1.5 times compared with the low dose group. The results of histopathological sections also showed that the administration of excess blank nanoparticles within 24 h has no damage to the animals. This study contributes to the clinical transition of nanomedicine by providing fresh ideas for anticancer nanomedicine research.


Assuntos
Nanopartículas , Neoplasias , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia
19.
Mol Pharm ; 19(3): 819-830, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170976

RESUMO

The emergence of superbacteria as well as the drug resistance of the current bacteria gives rise to worry regarding a bacterial pandemic and also calls for the development of novel ways to combat the bacteria. Here in this article, we demonstrate that mild hyperthermia induced by hollow mesoporous Prussian blue nanoparticles (HMPBNPs) in alliance with a low concentration of hydrogen peroxide (H2O2) shows a powerful inhibition effect on bacteria. Our results demonstrate that this therapeutic regime could realize almost full growth inhibition of both Gram-positive (Staphylococcus aureus, S. aureus) and -negative bacteria (Escherichia coli, E. coli), as well as potent inhibition/elimination of the S. aureus biofilm. The wound healing results indicate that combination regime of the antibacterial system could be conveniently used for wound disinfection in vivo and could promote wound healing. To our limited knowledge, this is one of the few pioneer works to apply mild hyperthermia for the combat of bacteria, which provides a novel strategy to inspire future studies.


Assuntos
Hipertermia Induzida , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Escherichia coli , Ferrocianetos , Peróxido de Hidrogênio/farmacologia , Staphylococcus aureus
20.
Biomater Sci ; 10(3): 654-664, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34928277

RESUMO

Bacterial infection of wounds delays the healing process, increases the risk of chronic trauma associated with pain and complications, and offers a breeding ground for drug-resistant bacteria. A rapid and effective eradication of the bacterial species in the wound area is thus important. Herein, we designed a phototherapeutic antibacterial platform based on peptides and copper sulfide nanodots (CuS NDs) for multi-mechanistic eradication of bacteria colonized on the wound surface. The antimicrobial peptide weaves into a network in the form of a hydrogel, which supports CuS NDs to generate heat and produce reactive oxygen species (ROS) under the irradiation of near-infrared light (NIR). The heat and ROS generated in situ act as non-contact-based antibacterial factors and together with contact-based antimicrobial peptides cause irreversible membrane destruction, cell content damage, and thermal ablation of the bacteria. Lastly, nanodot-doped peptide hydrogels combined with collagen showed complete bacterial elimination and significantly accelerated wound healing in a splint-fixed mouse infection model.


Assuntos
Hidrogéis , Fototerapia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Peptídeos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...