Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(1): 011102, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640826

RESUMO

Converting solar energy to chemical energy in the form of hydrogen via water splitting is one of the promising strategies to solve the global energy crisis. Hematite, a traditional semiconducting oxide photoelectrode, can only absorb UV and visible parts of the solar spectrum, losing 40% infrared energy. In this paper, we report a novel plasmonic enhanced water splitting photoanode based on hematite-lanthanide upconversion nanocomposites to harvest lost photons below the bandgap of hematite. NaYF4:Er, Yb upconversion nanoparticles can upconvert photons from 980 nm to 510 nm-570 nm within the bandgap of hematite. More importantly, a gold nanodisk array with a plasmonic peak centered ∼1000 nm can further boost the photocurrent by 93-fold. It is demonstrated that the excitation process of lanthanide upconversion nanoparticles can be significantly enhanced by plasmonic nanostructures and can thus improve the water oxidation activity via plasmonic enhanced upconversion and hot electron injection, respectively. This new promising strategy will pave the way for plasmonic enhanced lost photon harvesting for applications in solar energy conversion.

2.
Nanoscale ; 11(4): 2079-2088, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30648720

RESUMO

Sensitive detection of disease biomarkers expressed by human cells is critical to the development of novel diagnostic and therapeutic methods. Here we report that plasmonic arrays based on gold nanostar (AuNS) monolayers enable up to 19-fold fluorescence enhancement for cellular imaging in the near-infrared (NIR) biological window, allowing the application of low quantum yield fluorophores for sensitive cellular imaging. The high fluorescence enhancement together with low autofluorescence interference in this wavelength range enable higher signal-to-noise ratio compared to other diagnostic modalities. Using AuNSs of different geometries and therefore controllable electric field enhancement, cellular imaging with tunable enhancement factors is achieved, which may be useful for the development of multicolour and multiplexed platforms for a panel of biomarkers, allowing to distinguish different subcell populations at the single cell level. Finally, the uptake of AuNSs within HeLa cells and their high biocompatibility, pave the way for novel high-performance in vitro and in vivo diagnostic platforms.

3.
Nanomaterials (Basel) ; 9(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577444

RESUMO

Solar water splitting by semiconductor based photoanodes and photocathodes is one of the most promising strategies to convert solar energy to chemical energy to meet the high demand for energy consumption in modern society. However, the state-of-the-art efficiency is too low to fulfill the demand. To overcome this challenge and thus enable the industrial realization of a solar water splitting device, different approaches have been taken to enhance the overall device efficiency, one of which is the incorporation of plasmonic nanostructures. Photoanodes and photocathodes coupled to the optimized plasmonic nanostructures, matching the absorption wavelength of the semiconductors, can exhibit a significantly increased efficiency. So far, gold and silver have been extensively explored to plasmonically enhance water splitting efficiency, with disadvantages of high cost and low enhancement. Instead, non-noble plasmonic metals such as aluminum and copper, are earth-abundant and low cost. In this article, we review their potentials in photoelectrolysis, towards scalable applications.

4.
Nanoscale ; 10(33): 15854-15864, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30105338

RESUMO

Gold nanostars (AuNSs) are promising agents for the development of high-performance diagnostic devices, by enabling metal enhanced fluorescence (MEF) in the physiological near-infrared (NIR) and second near-infrared (NIR-II) windows. The local electric field near their sharp tips and between their branches can be enhanced by several orders of magnitude, holding great promise for large fluorescence enhancements from single AuNS particles, rather than relying on interparticle coupling in nanoparticle substrates. Here, guided by electric field simulations, two different types of AuNSs with controlled morphologies and plasmonic responses in the NIR and NIR-II regions are used to investigate the mechanism of MEF from colloidal AuNSs. Fluorophore conjugation to AuNSs allows significant fluorescence enhancement of up to 30 times in the NIR window, and up to 4-fold enhancement in the NIR-II region. Together with other inherent advantages of AuNSs, including their multispike morphology offering easy access to cell membranes and their large surface area providing flexible multifunctionality, AuNS are promising for the development of in vivo imaging applications. Using time-resolved fluorescence measurements to deconvolute semi-quantitatively excitation enhancement from emission enhancement, we show that a combination of enhanced excitation and an increased radiative decay rate, both contribute to the observed large enhancement. In accordance to our electric field modelling, however, excitation enhancement is the component that varies most with particle morphology. These findings provide important insights into the mechanism of MEF from AuNSs, and can be used to further guide particle design for high contrast enhancement, enabling the development of MEF biodetection technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...