Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 21(4): 1243-1255, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421343

RESUMO

Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.


Assuntos
Genoma de Planta , Meliaceae , Toona , China , Cromossomos de Plantas , Malásia , Filogenia , Toona/genética
2.
Sci Rep ; 6: 26934, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270140

RESUMO

Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Vírus/genética , Sequência de Aminoácidos , Quimiocinas/genética , Sequência Conservada , Ontologia Genética , Genes Virais , Interações Hospedeiro-Patógeno , Genética Humana , Humanos , Filogenia , Receptores de Quimiocinas/genética
3.
DNA Res ; 20(5): 437-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23690543

RESUMO

MYB proteins constitute one of the largest transcription factor families in plants. Recent evidence revealed that MYB-related genes play crucial roles in plants. However, compared with the R2R3-MYB type, little is known about the complex evolutionary history of MYB-related proteins in plants. Here, we present a genome-wide analysis of MYB-related proteins from 16 species of flowering plants, moss, Selaginella, and algae. We identified many MYB-related proteins in angiosperms, but few in algae. Phylogenetic analysis classified MYB-related proteins into five distinct subgroups, a result supported by highly conserved intron patterns, consensus motifs, and protein domain architecture. Phylogenetic and functional analyses revealed that the Circadian Clock Associated 1-like/R-R and Telomeric DNA-binding protein-like subgroups are >1 billion yrs old, whereas the I-box-binding factor-like and CAPRICE-like subgroups appear to be newly derived in angiosperms. We further demonstrated that the MYB-like domain has evolved under strong purifying selection, indicating the conservation of MYB-related proteins. Expression analysis revealed that the MYB-related gene family has a wide expression profile in maize and soybean development and plays important roles in development and stress responses. We hypothesize that MYB-related proteins initially diversified through three major expansions and domain shuffling, but remained relatively conserved throughout the subsequent plant evolution.


Assuntos
Evolução Molecular , Genoma de Planta , Proteínas Oncogênicas v-myb/genética , Plantas/genética , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Íntrons , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...