Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 405: 130936, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851597

RESUMO

Microbial fuel cell (MFC) is a promising device for water decontamination and energy generation. However, the correlation between power generation and pollutant degradation has not been clarified. Herein, a ruthenium-activated carbon (Ru-AC) bioanode was constructed for chlorobenzenes (CBs) treatment. The pollutant tolerance was improved by Ru-AC anode, and the minimum removal efficiencies of CB and ortho-dichlorobenzene (o-DCB) reached 75.1 % and 69.3 %, respectively, which were considerably higher than those of other MFCs (16.3 %-39.7 %). Correspondingly, the maximum output voltage reached 360.7 mV for the Ru-AC anode, whereas the values obtained from others reached 45.2-149.6 mV. Interaction models were introduced to quantify the relationship between power generation and pollutant degradation. The conversion of highly toxic chlorophenols to organic acids could be accelerated by boosting the mass and electron transfer, thereby simultaneously enhancing CBs removal and power generation. This work provided important insights into pollutant-powered MFC development.


Assuntos
Fontes de Energia Bioelétrica , Clorobenzenos , Eletrodos , Cinética , Poluentes Químicos da Água , Rutênio/química , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Biodegradação Ambiental , Purificação da Água/métodos
2.
Chemosphere ; 350: 141105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171394

RESUMO

The efficient biodegradation of volatile chlorinated hydrocarbons using microbial fuel cells (MFCs) offers a feasible approach for purifying waste gas and alleviating energy crises. However, power generation is limited by poor pollutant biodegradation and slow electron transfer. The bifunctional bacterium Acinetobacter sp. HY-99C was screened and used to improve the performance of a conventional MFC. The inoculation of strain HY-99C into the conventional MFC promoted the formation of a compact biofilm with high metabolic activity and an enriched bifunctional genus (Acinetobacter), which resulted in the accelerated decomposition of chlorinated aromatic compounds into biodegradable organic acids. This led to efficient chlorobenzene removal and power generation from the MFC, with a chlorobenzene elimination capacity of 70.8 g m-3 h-1 and power density of 89.6 mW m-2, which are improved over those of previously reported MFCs. This study provides novel insights into enhancing pollutant removal and power generation in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Gases , Bactérias , Clorobenzenos , Eletrodos , Eletricidade
3.
Sci Total Environ ; 914: 170046, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218485

RESUMO

p-Phenylenediamine antioxidants (PPDs) and PPDs-derived quinones (PPDQs) may pose a threat to the river ecosystem. However, the knowledge on the occurrence and environmental behaviors of PPDs and PPDQs in the natural river environment remains unknown. In this study, we collected paired water (n = 30) and sediment samples (n = 30) from Jiaojiang River, China and analyzed them for nine PPDs and seven PPDQs. Our results showed that target PPDs and PPDQs are frequently detected in water samples, with the dominance of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD; mean 12 ng/L, range 4.0-72 ng/L) and 6PPD-derived quinone (6PPDQ; 7.0 ng/L,

4.
Int J Biol Macromol ; 254(Pt 2): 127887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935288

RESUMO

A cleaner and safer environment is one of the most important requirements in the future. It has become increasingly urgent and important to fabricate novel environmentally-friendly materials to remove various hazardous pollutants. Compared with traditional materials, chitosan is a more environmentally friendly material due to its abundance, biocompatibility, biodegradability, film-forming ability and hydrophilicity. As an abundant of -NH2 and -OH groups on chitosan molecular chain could chelate with all kinds of metal ions efficiently, chitosan-based materials hold great potential as a versatile supporting matrix for metal oxide nanomaterials (MONMs) (TiO2, ZnO, SnO2, Fe3O4, etc.). Recently, many chitosan/metal oxide nanomaterials (CS/MONMs) have been reported as adsorbents, photocatalysts, heterogeneous Fenton-like agents, and sensors for potential and practical applications in environmental remediation and monitoring. This review analyzed and summarized the recent advances in CS/MONMs composites, which will provide plentiful and meaningful information on the preparation and application of CS/MONMs composites for wastewater treatment and help researchers to better understand the potential of CS/MONMs composites for environmental remediation and monitoring. In addition, the challenges of CS/MONM have been proposed.


Assuntos
Quitosana , Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanocompostos , Poluentes Químicos da Água , Óxidos , Adsorção
5.
Sci Total Environ ; 912: 169325, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101633

RESUMO

The p-phenylenediamine antioxidants (PPDs) have been widely detected in various dust samples. Nevertheless, the knowledge on occurrence of their environmental transformation products, PPD-derived quinones (PPDQs), in indoor dust remains limited. In this study, indoor dust samples (n = 97) were collected from Hangzhou, China, and analyzed for PPDs and PPDQs. Results showed that nine PPDs were detected in indoor dust samples, with the total concentrations of 1.7-223 ng/g. N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD, mean 17 ng/g) was the predominant PPDs in indoor dust, followed by N, N'-di(o-tolyl)-p-phenylenediamine (DTPD, 8.6 ng/g) and N-(1,3-dimethylbutyl)-N'-(p-tolyl)-p-phenylenediamine (DMTPD, 4.7 ng/g). Five PPDQs were detected in indoor dust samples. Among detected PPDQs, 6PPDQ (14 ng/g, 0.33-82 ng/g) had the highest mean concentration, followed by DTPDQ (5.9 ng/g, < LOD-31 ng/g) and DPPDQ (2.2 ng/g, < LOD-11 ng/g). We also estimated the daily intake (DI) of PPDs and PPDQs through indoor dust ingestion. Infants had higher mean DIs of PPDs and PPDQs than children and adults. Notably, to our knowledge, this study first reports the occurrence of three novel PPDs and four novel PPDQs in indoor dust samples. More studies are needed to reveal the potential human health risks of exposure to these newly identified chemicals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Fenilenodiaminas , Lactente , Adulto , Criança , Humanos , Exposição Ambiental/análise , Antioxidantes , Poluentes Atmosféricos/análise , Quinonas , Poeira/análise , Poluição do Ar em Ambientes Fechados/análise , China
6.
Environ Res ; 236(Pt 2): 116867, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37573819

RESUMO

Phosphorus scarcity and the deleterious ecological impact of the release of organophosphorus pesticides have emerged as critical global issues. Previous research has shown the ability of electrochemistry to induce the precipitation of calcium phosphate from phosphorus-laden wastewater to recover the phosphorus. The current study presents a flow-through electrochemical system consisting of a column-shaped electrochemical reactor, a tubular stainless-steel (SS) cathode, and a titanium suboxides (TiSO) anode. This system simultaneously oxidizes tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and recycles phosphates. The influence of current density, flow rate, and initial calcium ions concentration were examined under continuous flow operation. To enhance the electrochemical reactor's performance, we elevated the current density from 5 to 30 mA cm-2, which caused the phosphorus recovery efficiency to increase from 37% to 72% within 120 min, accompanied by an enhancement of the THPS mineralization efficiency from 57% to 90%. These improvements were likely due to the higher yield of reactive species chloride species (Cl•) formed at the TiSO anode and the higher local pH at the cathode. By investigating the formation of Cl• at the TiSO anode, we found that THPS mineralization exceeded 75% in the presence of NaCl at a current density of 20 mA cm-2. The demonstrated performance of the flow-through electrochemical system should enable the utilization of anodic oxidation-cathodic precipitation for the recovery of phosphorus from organophosphorus-contaminated wastewater.

7.
Sci Total Environ ; 888: 164197, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201808

RESUMO

Despite studies have proposed that microplastics (MPs) could exert adverse effects on terrestrial ecosystems and biota, the occurrence of MPs in wild terrestrial insects has been rarely investigated. This study examined MPs in 261 long-horned beetle (Coleoptera: Cerambycidae) samples collected from four different Chinese cities. Detection frequency of MPs in long-horned beetles from different cities was 68-88 %. Long-horned beetles from Hangzhou (4.0 items/individual) had the highest mean abundance of MPs, followed by that from Wuhan (2.9 items/individual), Kunming (2.5 items/individual), and Chengdu (2.3 items/individual). The mean size of MPs in long-horned beetles from four Chinese cities was 381-690 µm. Fiber consistently represented the major shape of MPs in long-horned beetles from different Chinese cities, contributing 60, 54, 50, and 49 % of total items of MPs in Kunming, Chengdu, Hangzhou, and Wuhan, respectively. Polypropylene was the major polymer composition of MPs in long-horned beetles from Chengdu (68 % of total items of MPs) and Kunming (40 %). However, polyethylene and polyester were the major types of polymer compositions of MPs in long-horned beetles from Wuhan (39 % of total MP items) and Hangzhou (56 %), respectively. To our knowledge, this is the first study investigating the occurrence of MPs in wild terrestrial insects. These data are important for evaluating the risks of exposure to MPs for long-horned beetles.


Assuntos
Besouros , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China
8.
J Hazard Mater ; 452: 131352, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027919

RESUMO

The selective electrochemical reduction of oxygen (O2) via 3e- pathway for the production of hydroxyl radicals (HO) is a promising alternative to conventional electro-Fenton process. Here, we developed a nitrogen-doped CNT-encapsulated Ni nanoparticle electrocatalyst (Ni@N-CNT) with high O2 reduction selectivity for the generation of HO•via 3e- pathway. Exposed graphitized N on the CNT shell, and Ni nanoparticles encapsulated within the tip of the N-CNT, played a key role in the generation of H2O2 intermediate (*HOOH) via a 2e- oxygen reduction reaction. Meanwhile, those encapsulated Ni nanoparticles at the tip of the N-CNT facilitated the sequential HO• generation by directly decomposing the electrogenerated *H2O2 in a 1e- reduction reaction on the N-CNT shell without inducing Fenton reaction. Improved bisphenol A (BPA) degradation efficiency were observed when compared with conventional batch system (97.5% vs 66.4%). Trials using Ni@N-CNT in a flow-through configuration demonstrated a complete removal of BPA within 30 min (k = 0.12 min-1) with a limited energy consumption of 0.068 kW·h·g-1 TOC.

9.
Phys Rev Lett ; 130(11): 116701, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001099

RESUMO

We provide strong evidence of the spin-nematic state in a paradigmatic ferro-antiferromagnetic J_{1}-J_{2} model using analytical and density-matrix renormalization group methods. In zero field, the attraction of spin-flip pairs leads to a first-order transition and no nematic state, while pair repulsion at larger J_{2} stabilizes the nematic phase in a narrow region near the pair-condensation field. A devil's staircase of multipair condensates is conjectured for weak pair attraction. A suppression of the spin-flip gap by many-body effects leads to an order-of-magnitude contraction of the nematic phase compared to naïve expectations. The proposed phase diagram should be broadly valid.

10.
Environ Sci Pollut Res Int ; 30(14): 40084-40093, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607577

RESUMO

Polystyrene-made food containers (PMFCs) have been widely used as takeout containers in China. However, the pollution of microplastics (MPs) in PMFCs used in Chinese restaurants remains not well known. For the first time, this study analyzed MPs in PMFC samples (n = 354) collected from different restaurants in 28 Chinese cities. MPs were detected in all PMFC samples, with an abundance of 5-173 items/container. PMFC samples from Taiyuan (mean of 86 items/container) contained the highest mean abundance of MPs. A relatively lower abundance of MPs was found in PMFCs from Urumqi (mean of 19 items/container) and Fuzhou (18 items/container). Fiber was the predominant shape of MPs in most of the PMFC samples. The abundance of MPs in PMFCs was positively correlated with the proportion of fiber. The major polymer composition of MPs was polystyrene, accounting for a mean of 45-90% of total polymers for MPs in PMFCs from different cities. The abundance of MPs in PMFC samples was negatively correlated with the proportion of polystyrene. The mean estimated oral exposure of MPs for the general population in different Chinese cities was 0.24-1.4 items/kg bw/day. Such data is important for human MP exposure risk assessment and also for elucidating the sources of human exposure to MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Poliestirenos , Embalagem de Alimentos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , China
11.
Environ Sci Pollut Res Int ; 30(15): 44985-44998, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701055

RESUMO

Magnetic γ-Fe2O3/Al3+@chitosan-derived biochar (m-Fe2O3/Al3+@CB) was prepared by introducing magnetic maghemite (γ-Fe2O3) nanoparticles and aluminum sulfate [Al2(SO4)3] into chitosan-derived biochar (CB) obtained at low pyrolysis temperatures. m-Fe2O3/Al3+@CB was used to remove typical anionic azo dye (Congo red, CR). Effects of initial CR concentration, contact time, initial pH value, background electrolytes, and temperature on CR adsorption by m-Fe2O3/Al3+@CB were studied. Compared with magnetic chitosan-derived biochar (m-Fe2O3@CB), m-Fe2O3/Al3+@CB exhibited excellent performance for a wider range of pH values (pH 1-7) and in the presence of background electrolyte. The introduction of Al3+ is an effective method for improving the properties of magnetic chitosan-derived biochar. High CR adsorption capacity (636.94 mg g-1) of m-Fe2O3/Al3+@CB could result from collaborative effect of flocculation/coagulation and electrostatic attraction. These results demonstrated that m-Fe2O3/Al3+@CB is a potential adsorbent for effective removal of organic dyes from aqueous solution due to its high adsorption capacity and convenient magnetic recovery and stronger anti-interference ability against coexisting anions in wastewater.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Temperatura , Compostos Azo , Pirólise , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fenômenos Magnéticos , Cinética
12.
Int J Biol Macromol ; 226: 443-453, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36473527

RESUMO

It has been always attractive to design a sustainable bio-derived adsorbent based on industrial waste lignin for removing organic dyes from water. However, existing adsorbent strategies often lead to the difficulties in adsorbent separation and recycling. Herein, we report a novel magnetically recyclable bio-adsorbent of Mg(OH)2/Fe3O4/PEI functionalized enzymatic lignin (EL) composite (EL-PEI@Fe3O4-Mg) for removing Congo red (CR) by Mannish reaction and hydrolysis-precipitation. The Mg(OH)2 and PEI functionalized EL on the surface act as active sites for the removal of CR, while the Fe3O4 allows for the easy separation under the help of a magnet. As-obtained EL-PEI@Fe3O4-Mg forms flower-like spheres and has a relatively lager surface area of 24.8 m2 g-1 which is 6 times that of EL. The EL-PEI@Fe3O4-Mg exhibits a relatively high CR adsorption capacity of 74.7 mg g-1 which is 15 times that of EL when initial concentration is around 100 mg L-1. And it can be easily separated from water by applying an external magnetic field. Moreover, EL-PEI@Fe3O4-Mg shows an excellent anti-interference capability according to the results of pH values and salt ions influences. Importantly, EL-PEI@Fe3O4-Mg possesses a good reusability and a removal efficiency of 92 % for CR remains after five consecutive cycles. It is illustrated that electrostatic attraction, π-π interaction and hydrogen binding are primary mechanisms for the removal of CR onto EL-PEI@Fe3O4-Mg. This work provides a novel sustainable strategy for the development of highly efficient, easy separable, recyclability bio-derived adsorbents for removing organic dyes, boosting the efficient utilization of industrial waste lignin.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Vermelho Congo/química , Lignina , Resíduos Industriais , Poluentes Químicos da Água/química , Água/química , Corantes , Adsorção , Concentração de Íons de Hidrogênio , Cinética
13.
Int J Biol Macromol ; 227: 1234-1244, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464188

RESUMO

The water solubility in acid solution, relative low adsorption capacities and unsatisfactory separation performance limit application of traditional chitosan-based adsorbents in wastewater treatment. To break the limitation, a hydrophilic magnetic Fe3O4 embedded chitosan-crosslinked-polyacrylamide composites (abbreviated as m-CS-c-PAM) were prepared by a two-step method. The m-CS-c-PAM composites were systematically characterized using SEM, XRD, FTIR, VSM, TGA and BET. Sunset yellow (SY) was selected as model food dye to investigate adsorption kinetics and thermodynamic parameters of food dye adsorption onto m-CS-c-PAM. Compared with magnetic Fe3O4/chitosan, m-CS-c-PAM can adapt to a wider range of pH (2-10) and resist the presence of inorganic salts. m-CS-c-PAM was proved to have high adsorption capacity (359.71 mg g-1) for SY dye at 298 K, much higher than magnetic Fe3O4/chitosan and many reported adsorbents. Moreover, m-CS-c-PAM could be rapidly and efficiently separated from treated solution within 15 s by an external magnet and regenerated by NaOH solution. With its excellent adsorption capacity, pH-independent adsorption capability for food dye, easy and convenient separation ability, satisfactory reusability, m-CS-c-PAM can be a promising material for food wastewater treatment.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Quitosana/química , Magnetismo , Cinética , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
14.
PLoS One ; 17(6): e0268615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771809

RESUMO

Beijing and Tianjin are two of the largest cities in northern China with high population densities and highly developed manufacturing industries. In the past decade, some authors have reported their PAH concentrations in surface soils, identified their sources and quantitatively reported their health risks. However, the contributions of different PAH sources to their toxicity have not been reported thus far. In this study, we reviewed the PAH concentrations, contributions of different sources to the toxicity, and cancer risks in soils from different land use types found within Beijing and Tianjin from data gathered by 41 studies. The total PAH concentration varied in the range of 175.7-1989.0 ng g-1 with a higher median PAH concentration detected in urban soils (789.7 ng g-1), followed by suburban soils (647.3 ng g-1) and rural soils (390.8 ng g-1). Source identification using diagnostic ratios and principal component analysis (PCA) suggested that the PAHs in all three land use types mainly originated from biomass and coal combustion, vehicular emissions, and petrogenic processes with contributions varying from 13% to 62%. Furthermore, results from a positive matrix factorization (PMF) model suggested that vehicular emissions and coal combustion in urban soils, and the vehicular emissions, coal combustion and biomass combustion in suburban and rural soils dominated the total PAH concentrations (>85%). These results were consistent with those of the PCA model. Results of the additional toxicity apportionment performed using the PMF model suggested that vehicular emissions and coal combustion contributed the most to the toxic equivalent quantity for Benzo(a)Pyrene (BaPTEQ) and, by extension, to the carcinogenic potencies. The incremental lifetime cancer risk (ILCR) values suggested a low risk level for adults exposed to PAHs in the different land use types found within Beijing and Tianjin.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Adulto , Pequim , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
15.
Proc Natl Acad Sci U S A ; 118(44)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706937

RESUMO

We report results of large-scale ground-state density matrix renormalization group (DMRG) calculations on t-[Formula: see text]-J cylinders with circumferences 6 and 8. We determine a rough phase diagram that appears to approximate the two-dimensional (2D) system. While for many properties, positive and negative [Formula: see text] values ([Formula: see text]) appear to correspond to electron- and hole-doped cuprate systems, respectively, the behavior of superconductivity itself shows an inconsistency between the model and the materials. The [Formula: see text] (hole-doped) region shows antiferromagnetism limited to very low doping, stripes more generally, and the familiar Fermi surface of the hole-doped cuprates. However, we find [Formula: see text] strongly suppresses superconductivity. The [Formula: see text] (electron-doped) region shows the expected circular Fermi pocket of holes around the [Formula: see text] point and a broad low-doped region of coexisting antiferromagnetism and d-wave pairing with a triplet p component at wavevector [Formula: see text] induced by the antiferromagnetism and d-wave pairing. The pairing for the electron low-doped system with [Formula: see text] is strong and unambiguous in the DMRG simulations. At larger doping another broad region with stripes in addition to weaker d-wave pairing and striped p-wave pairing appears. In a small doping region near [Formula: see text] for [Formula: see text], we find an unconventional type of stripe involving unpaired holes located predominantly on chains spaced three lattice spacings apart. The undoped two-leg ladder regions in between mimic the short-ranged spin correlations seen in two-leg Heisenberg ladders.

16.
Int J Biol Macromol ; 182: 434-444, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838194

RESUMO

The design of environmentally benign bio-adsorbents for the removal of phosphate from aqueous medium was an economic and effective way for controlling eutrophication. Herein, we prepared three kinds of TiO2/cellulose (CE-Ti) nanocomposites by a facile hydrolysis-precipitation method, and used them as antibacterial bio-adsorbents for the removal of phosphate from aqueous medium. Multiple techniques including Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and thermogravimetric analysis (TGA) were employed to characterize the nanostructure and characteristics of the prepared CE-Ti nanocomposite. The adsorption capacity of the CE-Ti was 19.57 mg P g-1 according to the Langmuir model, which was 6 times higher than that of CE. Importantly, the bacterial inhibition zone of the CE-Ti was 2.88 mm (that of CE was 0 mm), indicating that CE-Ti had good antibacterial activity that could reduce the attachment of the microorganism to the surface of CE-Ti, which was suitable for long-term phosphate removal. Moreover, the CE-Ti had good adsorption selectivity and anti-interference capability, according to interfering ions and ion strength experiments. Furthermore, Ti4+ leakage tests suggested that CE-Ti was highly stable under acidic, neutral and alkali conditions. These results indicated that the CE-Ti nanocomposite could be utilized as a promising antibacterial bio-adsorbent for effective phosphate removal from aqueous medium.


Assuntos
Antibacterianos/química , Celulose/análogos & derivados , Nanocompostos/química , Fosfatos/química , Titânio/química , Adsorção , Hidrólise
17.
ACS Omega ; 6(1): 505-515, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458502

RESUMO

The design of a reusable film adsorbent with easy solid-liquid separation for the removal of phosphate is necessary and significant but remains hugely challenging. Herein, the hyperbranched polyethylenimine-functionalized ethyl cellulose (HPEI-EC) film was successfully synthesized by a one-step solution-casting method. The structure and elemental composition of the HPEI-EC film were characterized by Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The phosphate adsorption capacity of the HPEI-EC film was 15.53 mg g-1, which is 12 times higher than that of EC. Significantly, the elongation at break of the HPEI-EC film was 13.43%, which is higher than that of the EC film (8.9%), and the HPEI-EC film had a considerable tensile strength of 13.21 MPa. Such good mechanical properties of the HPEI-EC film bring about the advantage of the saturated HPEI-EC film, allowing it to be easily taken out using a pair of tweezers, which significantly reduces the operation time and saves the cost in the application process. Furthermore, the HPEI-EC film possessed good reusability, and 71.6% of the original adsorption capacity of phosphate was retained even after five cycles. Moreover, the electrostatic interaction between protonated the amine group (-NH3 +) and the phosphate ion (PO4 3-) is mainly responsible for the adsorption process. This study presents a low-cost and reusable film adsorbent for the effective removal of phosphate from water and provides an easy solid-liquid separation method for use in the adsorption field.

18.
Int J Biol Macromol ; 174: 52-60, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33460656

RESUMO

Colloidal CdS sensitized nano-ZnO/chitosan (CdS@n-ZnO/CS) hydrogel was prepared and characterized extensively by XRD, SEM-EDS, TEM, UV-Vis DRS, FT-IR and TGA. The photocatalytic activity of CdS@n-ZnO/CS was evaluated with the photodegradation of congo red (CR) as an organic pollutant under solar light irradiation. The influences of initial dye concentration, catalyst dosage, recycling runs, and radical scavenger on decolorization of CR by CdS@n-ZnO/CS were investigated. 95% of CR was removed in just 1 min for 5.0 mg L-1 and 94.34% of CR was removed in 30 min for 100 mg L-1. CdS@n-ZnO/CS exhibited an excellent and ultra-fast performance toward CR removal under solar light due to the synergistic effect of adsorption by chitosan and photocatalysis by ZnO and CdS in CdS@n-ZnO/CS hydrogel. Radical trapping control experiments indicated that h+ and O2- played the major role for CR decolorization. The high performance of CdS@n-ZnO/CS hydrogel was also demonstrated under natural solar light irradiation, suggesting that CdS@n-ZnO/CS hydrogel could be used in practical wastewater treatment.


Assuntos
Compostos de Cádmio/química , Vermelho Congo/isolamento & purificação , Prata/química , Purificação da Água/métodos , Adsorção , Cádmio/química , Catálise , China , Quitosana/química , Hidrogéis/química , Cinética , Luz , Nanopartículas Metálicas/química , Nanocompostos , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Luz Solar , Óxido de Zinco/química
19.
Carbohydr Polym ; 252: 117158, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183609

RESUMO

Magnetic NiFe2O4 nanoparticles and multi-walled carbon nanotubes functionalized cellulose composite (m-NiFe2O4/MWCNTs@cellulose) as a magnetic bioadsorbent was prepared and used for effectively removing Congo Red (CR) from aqueous solution. The chemical and physical properties of the prepared m-NiFe2O4/MWCNTs@cellulose were characterized by XRD, TGA, FT-IR, VSM, SEM and TEM. Batch experiments were carried out to investigate the adsorption capacity and mechanisms. Effects of different adsorption parameters such as initial CR concentration, adsorbent dosage and temperature were studied. Results demonstrated that m-NiFe2O4/MWCNTs@cellulose had high adsorption capacity for CR from aqueous solution. The obtained experimental data fitted well with the pseudo-second-order equation and followed the Langmuir isotherm model with a maximum adsorption capacity of 95.70 mg g-1 for CR. The m-NiFe2O4/MWCNTs@cellulose with rapid magnetic separation and high adsorption capacity can be a promising and recyclable engineering biomaterials for purification and treatment of practical wastewater.


Assuntos
Celulose/química , Vermelho Congo/química , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cinética , Águas Residuárias/química
20.
Adv Mater ; 29(28)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585367

RESUMO

Solid electrolytes have attracted much attention due to their great prospects in a number of energy- and environment-related applications including fuel cells. Fast ion transport and superior mechanical properties of solid electrolytes are both of critical significance for these devices to operate with high efficiency and long-term stability. To address a common tradeoff relationship between ionic conductivity and mechanical properties, electrolyte membranes with proton-conducting 2D channels and nacre-inspired architecture are reported. An unprecedented combination of high proton conductivity (326 mS cm-1 at 80 °C) and superior mechanical properties (tensile strength of 250 MPa) are achieved due to the integration of exceptionally continuous 2D channels and nacre-inspired brick-and-mortar architecture into one materials system. Moreover, the membrane exhibits higher power density than Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating potential savings in system weight and cost. Considering the extraordinary properties and independent tunability of ion conduction and mechanical properties, this bioinspired approach may pave the way for the design of next-generation high-performance solid electrolytes with nacre-like architecture.


Assuntos
Fontes de Energia Bioelétrica , Eletrólitos/química , Bentonita/química , Condutividade Elétrica , Grafite/química , Nanocompostos/química , Álcool de Polivinil/química , Prótons , Resistência à Tração , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...