Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38984582

RESUMO

OBJECTIVE: Proteomic elucidation is an essential step in improving our understanding of the biological properties of proteins in amyotrophic lateral sclerosis (ALS). METHODS: Preliminary proteomic analysis was performed on the spinal cord and brain of SOD1 G93A (TG) and wild-type (WT) mice using isobaric tags for relative and absolute quantitation. RESULTS: Partial up- and downregulated proteins showing significant differences between TG and WT mice were identified, of which 105 proteins overlapped with differentially expressed proteins in both the spinal cord and brain of progression mice. Bioinformatic analyses using Gene Ontology, a cluster of orthologous groups, and Kyoto Encyclopedia of Genes and Genomes pathway revealed that the significantly up- and downregulated proteins represented multiple biological functions closely related to ALS, with 105 overlapping differentially expressed proteins in the spinal cord and brain at the progression stage of TG mice closely related to 122 pathways. Differentially expressed proteins involved in a set of molecular functions play essential roles in maintaining neural cell survival. CONCLUSION: This study provides additional proteomic profiles of TG mice, including potential overlapping proteins in both the spinal cord and brain that participate in pathogenesis, as well as novel insights into the up- and downregulation of proteins involved in the pathogenesis of ALS.

2.
Mol Neurobiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829511

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease mainly characterized by the accumulation of ubiquitinated proteins in the affected motor neurons. At present, the accurate pathogenesis of ALS remains unclear and there are still no effective treatment measures for ALS. The potential pathogenesis of ALS mainly includes the misfolding of some pathogenic proteins, the genetic variation, mitochondrial dysfunction, autophagy disorders, neuroinflammation, the misregulation of RNA, the altered axonal transport, and gut microbial dysbiosis. Exploring the pathogenesis of ALS is a critical step in searching for the effective therapeutic approaches. The current studies suggested that the genetic variation, gut microbial dysbiosis, the activation of glial cells, and the transportation disorder of extracellular vesicles may play some important roles in the pathogenesis of ALS. This review conducts a systematic review of these current potential promising topics closely related to the pathogenesis of ALS; it aims to provide some new evidences and clues for searching the novel treatment measures of ALS.

3.
Neural Regen Res ; 19(11): 2513-2521, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526287

RESUMO

JOURNAL/nrgr/04.03/01300535-202419110-00031/figure1/v/2024-03-08T184507Z/r/image-tiff Amyotrophic lateral sclerosis is a neurodegenerative disease, and the molecular mechanism underlying its pathology remains poorly understood. However, inflammation is known to play an important role in the development of this condition. To identify driver genes that affect the inflammatory response in amyotrophic lateral sclerosis, as well as potential treatment targets, it is crucial to analyze brain tissue samples from patients with both sporadic amyotrophic lateral sclerosis and C9orf72-related amyotrophic lateral sclerosis. Therefore, in this study we used a network-driven gene analysis tool, NetBID2.0, which is based on SJARACNe, a scalable algorithm for the reconstruction of accurate cellular networks, to experimentally analyze sequencing data from patients with sporadic amyotrophic lateral sclerosis. The results showed that the OSMR gene is pathogenic in amyotrophic lateral sclerosis and participates in the progression of amyotrophic lateral sclerosis by mediating the neuroinflammatory response. Furthermore, there were differences in OSMR activity and expression between patients with sporadic amyotrophic lateral sclerosis and those with C9orf72-related amyotrophic lateral sclerosis. These findings suggest that OSMR may be a diagnostic and prognostic marker for amyotrophic lateral sclerosis.

4.
Neural Regen Res ; 19(5): 1036-1044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862206

RESUMO

Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.

5.
Aging (Albany NY) ; 15(24): 15324-15339, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38157256

RESUMO

OBJECTIVE: To investigate the alteration of PV interneurons in ALS mainly focusing its dynamic changes and its relationship with motor neurons and ErbB4 signaling. METHODS: SOD1G93A mice were used as ALS model. ALS animals were divided into different groups according to birth age: symptomatic prophase (50~60 days), symptomatic phase (90~100 days), and symptomatic progression (130~140 days). Immunofluorescence was performed for measurement of PV-positive interneurons, MMP-9, ChAT, NeuN and ErbB4. RT-qPCR and western blot were used to determine the expression of PV and MMP-9. RESULTS: PV expression was remarkably higher in the anterior horn of gray matter compared with posterior horn and area in the middle of gray matter in control mice. In ALS mice, PV, MMP-9 and ErbB4 levels were gradually decreased along with onset. PV, MMP-9 and ErbB4 levels in ALS mice were significantly down-regulated than control mice after onset, indicating the alteration of PV interneurons, FαMNs and ErbB4. SαMNs levels only decreased remarkably at symptomatic progression in ALS mice compared with control mice, while γMNs levels showed no significant change during whole period in all mice. MMP-9 and ErbB4 were positively correlated with PV. NRG1 treatment significantly enhanced the expression of ErBb4, PV and MMP-9 in ALS mice. CONCLUSION: PV interneurons decrease is along with FαMNs and ErbB4 decrease in ALS mice.


Assuntos
Esclerose Lateral Amiotrófica , Interneurônios , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Interneurônios/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo
6.
Cell Mol Neurobiol ; 43(8): 3783-3799, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870685

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is one of the commonest neurodegenerative diseases of adult-onset, which is characterized by the progressive death of motor neurons in the cerebral cortex, brain stem and spinal cord. The dysfunction and death of motor neurons lead to the progressive muscle weakness, atrophy, fasciculations, spasticity and ultimately the whole paralysis of body. Despite the identification of several genetic mutations associated with the pathogenesis of ALS, including mutations in chromosome 9 open reading frame 72 leading to the abnormal expansion of GGGGCC repeat sequence, TAR DNA-binding protein 43, fused in sarcoma/translocated in liposarcoma, copper/zinc superoxide dismutase 1 (SOD1) and TANK-binding kinase 1, the exact mechanisms underlying the specific degeneration of motor neurons that causes ALS remain incompletely understood. At present, since the transgenic model expressed SOD1 mutants was established, multiple in vitro models of ALS have been developed for studying the pathology, pathophysiology and pathogenesis of ALS as well as searching the effective neurotherapeutics. This review reviewed the details of present established in vitro models used in studying the pathology, pathophysiology and pathogenesis of ALS. Meanwhile, we also discussed the advantages, disadvantages, cost and availability of each models.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Mutação/genética , Superóxido Dismutase/metabolismo , Camundongos Transgênicos
7.
Neural Regen Res ; 18(9): 2047-2055, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926731

RESUMO

Previous studies have indicated that the pathogenesis of amyotrophic lateral sclerosis (ALS) is closely linked to 5-hydroxytryptamine (5-HT). To investigate this further, we administered 5-HT receptor antagonists to SOD1*G93A transgenic (ALS mouse model) and wide-type mice. This involved intraperitoneal injections of either granisetron, piboserod, or ritanserin, which inhibit the 5-HT3, 5-HT4, and 5-HT2 receptors, respectively. The transgenic mice were found to have fewer 5-HT-positive cells in the spinal cord compared with wide-type mice. We found that the administration of granisetron reduced the body weight of the transgenic mice, while piboserod and ritanserin worsened the motor functioning, as assessed using a hanging wire test. However, none of the 5-HT receptor antagonists affected the disease progression. We analyzed the distribution and/or expression of TAR DNA binding protein 43 (TDP-43) and superoxide dismutase 1 G93A (SOD1-G93A), which form abnormal aggregates in ALS. We found that the expression of these proteins increased following the administration of all three 5-HT receptor antagonists. In addition, the disease-related mislocalization of TDP-43 to the cytoplasm increased markedly for all three drugs. In certain anatomical regions, the 5-HT receptor antagonists also led to a marked increase in the number of astrocytes and microglia and a decrease in the number of neurons. These results indicate that 5-HT deficiency may play a role in the pathogenesis of amyotrophic lateral sclerosis by inducing the abnormal expression and/or distribution of TDP-43 and SOD1-G93A and by activating glial cells. 5-HT could therefore be a potential therapeutic target for amyotrophic lateral sclerosis.

8.
Neural Regen Res ; 18(7): 1527-1534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571358

RESUMO

Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur (TG) amyotrophic lateral sclerosis mouse model. However, most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown. In this study, we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis. Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting, and cell proliferation and proteins (TAR DNA binding protein 43, superoxide dismutase 1, and Bax) were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells. We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins. Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons. Amyotrophic lateral sclerosis mice were examined at three stages: preonset (60-70 days), onset (90-100 days) and progression (120-130 days). The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage. The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group, whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage. The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group. The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage. The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage, significantly decreased at the onset stage, and significantly increased at the progression stage compared with the control group. heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage. After heterogenous nuclear ribonucleoprotein G gene silencing, PC12 cell survival was lower than that of control cells. Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells. Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.

9.
Front Immunol ; 13: 874978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479082

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, and its candidate biomarkers have not yet been fully elucidated in previous studies. Therefore, with the present study, we aim to define and verify effective biomarkers of ALS by bioinformatics. Here, we employed differentially expressed gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), enrichment analysis, immune infiltration analysis, and protein-protein interaction (PPI) to identify biomarkers of ALS. To validate the biomarkers, we isolated the lumbar spinal cord from mice and characterized them using Western blotting and immunofluorescence. The results showed that Dhrs4 expression in the spinal cord was upregulated with the progression of SOD1G93A mice, and the upregulation of DHRS4 and its synergistic DHRS3 might be primarily associated with the activation of the complement cascade in the immune system (C1QA, C1QB, C1QC, C3, and ITGB2), which might be a novel mechanism that induces spinal neurodegeneration in ALS. We propose that DHRS4 and its synergistic DHRS3 are promising molecular markers for detecting ALS progression.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Ativação do Complemento , Camundongos , Regulação para Cima
11.
Cell Mol Neurobiol ; 42(4): 1035-1046, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33236288

RESUMO

Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Neurais , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Fator de Crescimento Neural/metabolismo , Células-Tronco Neurais/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
12.
Front Cell Neurosci ; 16: 993424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589282

RESUMO

Rationale and objectives: Considering the great insufficiency in the survival prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental to determine an accurate survival prediction for both the clinical practices and the design of treatment trials. Therefore, there is a need for more accurate biomarkers that can be used to identify the subtype of ALS which carries a high risk of progression to guide further treatment. Methods: The transcriptome profiles and clinical parameters of a total of 561 ALS patients in this study were analyzed retrospectively by analysis of four public microarray datasets. Based on the results from a series of analyses using bioinformatics and machine learning, immune signatures are able to be used to predict overall survival (OS) and immunotherapeutic response in ALS patients. Apart from other comprehensive analyses, the decision tree and the nomogram, based on the immune signatures, were applied to guide individual risk stratification. In addition, molecular docking methodology was employed to screen potential small molecular to which the immune signatures might response. Results: Immune was determined as a major risk factor contributing to OS among various biomarkers of ALS patients. As compared with traditional clinical features, the immune-related gene prognostic index (IRGPI) had a significantly higher capacity for survival prediction. The determination of risk stratification and assessment was optimized by integrating the decision tree and the nomogram. Moreover, the IRGPI may be used to guide preventative immunotherapy for patients at high risks for mortality. The administration of 2MIU IL2 injection in the short-term was likely to be beneficial for the prolongment of survival time, whose dosage should be reduced to 1MIU if the long-term therapy was required. Besides, a useful clinical application for the IRGPI was to screen potential compounds by the structure-based molecular docking methodology. Conclusion: Ultimately, the immune-derived signatures in ALS patients were favorable biomarkers for the prediction of survival probabilities and immunotherapeutic responses, and the promotion of drug development.

13.
Mol Neurobiol ; 57(8): 3603-3615, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548665

RESUMO

All-trans retinoic acid (ATRA), a ligand of retinoic acid receptors, could regulate various biological processes by activating retinoic acid signals. Recent studies suggested that ATRA displays multiple neuroprotective effects and thereby alleviates the disease progression in a variety of neurological diseases. Our previous studies found that the impaired retinoic acid signal decreased ALDH1A2, an essential synthetase of ATRA, in the spinal cord of ALS mice. Here, we evaluated the neuroprotective and neurorestorative effects of ATRA in a SOD1-G93A transgenic mice model of ALS. We administrated ATRA(3 mg/kg) daily from the onset stage to the progression stage for 5 weeks. Behavioral tests showed that ATRA improved the forelimb grip strength in ALS mice and may slow the disease progression, but not the body weight. ATRA could completely reverse the impaired retinoic acid receptor alpha (RARα) signal in the spinal cord of ALS mice. This effect was accompanied by enhancing the degradation of misfolded proteins via the ubiquitin-proteasome system, regulating the oxidative stress, inhibiting the astrocyte activation, and promoting the neurotrophic signal recovery. Our findings are the first to indicate that the damaged retinoic acid signal is involved in the pathogenesis of ALS, and ATRA could induce the functional neuroprotection via repairing the damaged retinoic acid signal.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tretinoína/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Superóxido Dismutase/metabolismo
14.
Beilstein J Nanotechnol ; 8: 1642-1648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875101

RESUMO

Germanane, a hydrogen-terminated graphane analogue of germanium has generated interest as a potential 2D electronic material. However, the incorporation and retention of extrinsic dopant atoms in the lattice, to tune the electronic properties, remains a significant challenge. Here, we show that the group-13 element Ga and the group-15 element As, can be successfully doped into a precursor CaGe2 phase, and remain intact in the lattice after the topotactic deintercalation, using HCl, to form GeH. After deintercalation, a maximum of 1.1% As and 2.3% Ga can be substituted into the germanium lattice. Electronic transport properties of single flakes show that incorporation of dopants leads to a reduction of resistance of more than three orders of magnitude in H2O-containing atmosphere after As doping. After doping with Ga, the reduction is more than six orders of magnitude, but with significant hysteretic behavior, indicative of water-activation of dopants on the surface. Only Ga-doped germanane remains activated under vacuum, and also exhibits minimal hysteretic behavior while the sheet resistance is reduced by more than four orders of magnitude. These Ga- and As-doped germanane materials start to oxidize after one to four days in ambient atmosphere. Overall, this work demonstrates that extrinsic doping with Ga is a viable pathway towards accessing stable electronic behavior in graphane analogues of germanium.

15.
ACS Nano ; 10(10): 9500-9508, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27700035

RESUMO

The discovery of new families of exfoliatable 2D crystals that have diverse sets of electronic, optical, and spin-orbit coupling properties enables the realization of unique physical phenomena in these few-atom-thick building blocks and in proximity to other materials. Herein, using NaSn2As2 as a model system, we demonstrate that layered Zintl phases having the stoichiometry ATt2Pn2 (A = group 1 or 2 element, Tt = group 14 tetrel element, and Pn = group 15 pnictogen element) and feature networks separated by van der Waals gaps can be readily exfoliated with both mechanical and liquid-phase methods. We identified the symmetries of the Raman-active modes of the bulk crystals via polarized Raman spectroscopy. The bulk and mechanically exfoliated NaSn2As2 samples are resistant toward oxidation, with only the top surface oxidizing in ambient conditions over a couple of days, while the liquid-exfoliated samples oxidize much more quickly in ambient conditions. Employing angle-resolved photoemission spectroscopy, density functional theory, and transport on bulk and exfoliated samples, we show that NaSn2As2 is a highly conducting 2D semimetal, with resistivities on the order of 10-6 Ω·m. Due to peculiarities in the band structure, the dominating p-type carriers at low temperature are nearly compensated by the opening of n-type conduction channels as temperature increases. This work further expands the family of exfoliatable 2D materials to layered van der Waals Zintl phases, opening up opportunities in electronics and spintronics.

16.
J Phys Condens Matter ; 28(3): 034001, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26703817

RESUMO

The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues.

17.
Acc Chem Res ; 48(1): 144-51, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25490074

RESUMO

CONSPECTUS: The isolation of graphene has sparked a renaissance in the study of two-dimensional materials. This led to the discovery of new and unique phenomena such as extremely high carrier mobility, thermal conductivity, and mechanical strength not observed in the parent 3D structure. While the emergence of these phenomena has spurred widespread interest in graphene, the paradox between the high-mobility Fermi-Dirac electronic structure and the need for a sizable band gap has challenged its application in traditional semiconductor devices. While graphene is a fascinating and promising material, the limitation of its electronic structure has inspired researchers to explore other 2D materials beyond graphene. In this Account, we summarize our recent work on a new family of two-dimensional materials based on sp(3)-hybridized group IV elements. Ligand-terminated Si, Ge, and Sn graphane analogues are an emerging and unique class of two-dimensional materials that offer the potential to tailor the structure, stability, and properties. Compared with bulk Si and Ge, a direct and larger band gap is apparent in group IV graphane analogues depending on the surface ligand. These materials can be synthesized in gram-scale quantities and in thin films via the topotactic deintercalation of layered Zintl phase precursors. Few layers and single layers can be isolated via manual exfoliation and deintercalation of epitaxially grown Zintl phases on Si/Ge substrates. The presence of a fourth bond on the surface of the layers allows various surface ligand termination with different organic functional groups achieved via conventional soft chemical routes. In these single-atom thick materials, the electronic structure can be systematically controlled by varying the identities of the main group elements and by attaching different surface terminating ligands. In contrast to transition metal dichalcogenides, the weaker interlayer interaction allows the direct band gap single layer properties such as photoluminescence to be readily observable without the need to exfoliate down to single layers. Furthermore, these materials can be resilient to oxidation and thermal degradation, making them attractive candidates for next generation functional materials for electronic devices and beyond. This class of two-dimensional materials not only are promising building blocks for a variety of conventional semiconductor applications but also provide a pioneering platform to systematically and rationally control material properties using covalent chemistry. The stability and tunability of these versatile materials will push this system toward the forefront of two-dimensional research.

18.
Nat Commun ; 5: 3389, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24566761

RESUMO

Two-dimensional van der Waals materials have shown great promise for a variety of electronic, optoelectronic, sensing and energy conversion applications. Since almost every atom in these two-dimensional crystals is exposed to the surface, covalent surface termination could provide a powerful method for the controlled tuning of material properties. Here we demonstrate a facile, one-step metathesis approach that directly converts CaGe2 crystals into mm-sized crystals of methyl-terminated germanane (GeCH3). Replacing --H termination in GeH with --CH3 increases the band gap by ~0.1 eV to 1.7 eV, and produces band edge fluorescence with a quantum yield of ~0.2%, with little dependence on layer thickness. Furthermore, the thermal stability of GeCH3 has been increased to 250 °C compared with 75 °C for GeH. This one-step metathesis approach should be applicable for accessing new families of two-dimensional van der Waals lattices that feature precise organic terminations and with enhanced optoelectronic properties.

19.
ACS Nano ; 7(5): 4414-21, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23506286

RESUMO

Graphene's success has shown not only that it is possible to create stable, single-atom-thick sheets from a crystalline solid but that these materials have fundamentally different properties than the parent material. We have synthesized for the first time, millimeter-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane (CH). The surface layer of GeH only slowly oxidizes in air over the span of 5 months, while the underlying layers are resilient to oxidation based on X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy measurements. The GeH is thermally stable up to 75 °C; however, above this temperature amorphization and dehydrogenation begin to occur. These sheets can be mechanically exfoliated as single and few layers onto SiO2/Si surfaces. This material represents a new class of covalently terminated graphane analogues and has great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility ca. five times higher than that of bulk Ge.


Assuntos
Germânio/química , Grafite/química , Modelos Moleculares , Conformação Molecular , Silício/química , Dióxido de Silício/química , Temperatura
20.
Nanoscale ; 3(10): 4394-401, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21904723

RESUMO

Nanoscale materials with size smaller than the characteristic domain size could simplify the domain structure and uncover the intrinsic properties in detail. Herein, a ultrafast open space calcination pathway is first put forward to synthesize high-quality single-domain VO(2)(M) nanocrystals and an in situ variable-temperature IR spectroscopy is first proposed to identify the size-dependent MIT behaviors in VO(2)(M) below single-domain size. The variable-temperature IR spectroscopy clearly reveals that these single-domain VO(2)(M) nanocrystals exhibit new size-dependent MIT behaviors, while the IR analysis further suggests that the size-related defect density and scattering efficiency could be used to account for their novel size-dependent MIT behaviors. This new characterization strategy of in situ variable-temperature IR spectroscopy holds great promise for extending to other systems to gain valuable insight into their intrinsic phase transition behaviors. Also, this ultrafast open space calcination pathway sets forth a new avenue in fabricating high-quality functional nanocrystals and paves the way for constructing intelligent nanodevices in the near future.


Assuntos
Nanopartículas/química , Óxidos/química , Vanádio/química , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...