Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(4): 2049-2062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37840071

RESUMO

Ketamine as a glutamate receptor antagonist has a rapid, potent, and long-lasting antidepressant effect, but its specific mechanism is still not fully understood. Depression is associated with elevated levels of glutamate and astrocyte loss in the brain; the exploration of the relationships between ketamine's antidepressant effect and astrocytes has drawn great attention. Astrocytes and aquaporin 4 (AQP4) are essential components of the glymphatic system, which is a brain-wide perivascular pathway to help transport nutrients to the parenchyma and remove metabolic wastes. In this study, we investigated pyroptosis-associated protein Nlrp3/Caspase-1/Gsdmd-N expression in the hippocampus of mice and the toxic effect of high levels of glutamate on primary astrocytes. On this basis, the protective mechanism of ketamine is explored. A single administration of ketamine (10 mg/kg) remarkably relieved anxious and depressive behaviors in the sucrose preference test, elevated plus maze test, and forced swim test. Meanwhile, ketamine reduced the level of hippocampus Nlrp3 and the expression of its downstream molecules in chronic unpredictable mild stress (CUMS) mice model by western blot and reduced the colocalization of Gfap and Gsdmd by nearly 25% via immunofluorescent staining. Ketamine also increased the Gfap-positive cells and AQP4 expression in the hippocampus of the CUMS mice. More important, ketamine increased the distribution of the fluorescent tracer of CUMS mice. Treatment with 128 mM glutamate in cortical and hippocampus astrocytes increased the level of Nlrp3, and Gsdmd-N, and ketamine alleviated high glutamate-induced pyroptosis-associated proteins. In summary, these results suggest that high glutamate-induced astrocyte pyroptosis through the Nlrp3/Caspase-1/Gsdmd-N pathway which was inhibited by ketamine and ketamine can improve the damaged glymphatic function of the CUMS mice. The present study indicates that inhibiting astrocyte pyroptosis and promoting the glymphatic circulation function are a new mechanism of ketamine's antidepressant effect, and astrocyte pyroptosis may be a new target for other antidepressant medicines.


Assuntos
Sistema Glinfático , Ketamina , Ketamina/farmacologia , Sistema Glinfático/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Astrócitos/metabolismo , Piroptose , Antidepressivos/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Caspases/metabolismo , Depressão/metabolismo , Estresse Psicológico/metabolismo
3.
Front Plant Sci ; 14: 1134308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909446

RESUMO

Early-matured aromatic japonica rice from the Northeast is the most popular rice commodity in the Chinese market. The Qigeng10 (QG10) was one of the varieties with the largest planting area in this region in recent years. It was an early-matured japonica rice variety with a lot of superior traits such as semi-dwarf, lodging resistance, long grain, aromatic and good quality. Therefore, a high-quality assembly of Qigeng10 genome is critical and useful for japonica research and breeding. In this study, we produced a high-precision QG10 chromosome-level genome by using a combination of Nanopore and Hi-C platforms. Finally, we assembled the QG10 genome into 77 contigs with an N50 length of 11.80 Mb in 27 scaffolds with an N50 length of 30.55 Mb. The assembled genome size was 378.31Mb with 65 contigs and constituted approximately 99.59% of the 12 chromosomes. We identified a total of 1,080,819 SNPs and 682,392 InDels between QG10 and Nipponbare. We also annotated 57,599 genes by the Ab initio method, homology-based technique, and RNA-seq. Based on the assembled genome sequence, we detected the sequence variation in a total of 63 cloned genes involved in grain yield, grain size, disease tolerance, lodging resistance, fragrance, and many other important traits. Finally, we identified five elite alleles (qTGW2Nipponbare , qTGW3Nanyangzhan , GW5IR24 , GW6Suyunuo , and qGW8Basmati385 ) controlling long grain size, four elite alleles (COLD1Nipponbare , bZIP73Nipponbare , CTB4aKunmingxiaobaigu , and CTB2Kunmingxiaobaigu ) controlling cold tolerance, three non-functional alleles (DTH7Kitaake , Ghd7Hejiang19 , and Hd1Longgeng31 ) for early heading, two resistant alleles (PiaAkihikari and Pid4Digu ) for rice blast, a resistant allele STV11Kasalath for rice stripe virus, an NRT1.1BIR24 allele for higher nitrate absorption activity, an elite allele SCM3Chugoku117 for stronger culms, and the typical aromatic gene badh2-E2 for fragrance in QG10. These results not only help us to better elucidate the genetic mechanisms underlying excellent agronomic traits in QG10 but also have wide-ranging implications for genomics-assisted breeding in early-matured fragrant japonica rice.

4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614255

RESUMO

Rice breeders are now developing new varieties with semi-high or even high plant height to further increase the grain yield, and the problem of lodging has re-appeared. We identified a major quantitative trait locus (QTL), qSCM4, for resistance to lodging by using an F2 segregant population and a recombinant self-incompatible line population from the cross between Shennong265 (SN265) and Lijiangxintuanheigu (LTH) after multiple years and multiple environments. Then, the residual heterozygous derived segregant population which consisted of 1781 individual plants, and the BC3F2 segregant population which consisted of 3216 individual plants, were used to shorten the physical interval of qSCM4 to 58.5 kb including 11 genes. DNA sequencing revealed the most likely candidate gene for qSCM4 was Os04g0615000, which encoded a functional protein with structural domains of serine and cysteine. There were 13 DNA sequence changes in LTH compared to SN265 in this gene, including a fragment deletion, two base changes in the 3' UTR region, six base changes in the exons, and four base changes in the introns. A near-isogenic line carrying qSCM4 showed that it improved the lodging resistance through increasing stem thickness by 25.3% and increasing stem folding resistance by 20.3%. Furthermore, it was also discovered that qSCM4 enhanced the primary branch per panicle by 16.7%, secondary branch by per panicle 9.9%, and grain number per panicle by 14.7%. All the above results will give us a valuable genetic resource for concurrently boosting culm strength and lodging resistance, and they will also provide a basis for further research on the lodging resistance mechanism of rice.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Íntrons
5.
Behav Brain Res ; 435: 114062, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35985400

RESUMO

Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics. It has been reported that enriched environment (EE), as a new way of endogenous pharmacotherapy, is effective in attenuating chronic inflammatory pain. However, the underlying molecular mechanisms are still not fully understood. NMDA NR2B receptor plays a critical role in pain transmission and modulation. Thus, in this study, we aimed at the effect of EE on the NR2B receptors expression in the prefrontal cortex, hippocampus and thalamus in the inflammatory pain mice. The results showed a significant increase of NR2B receptors in the thalamus of mice at 7 d following injection of CFA in the subcutaneous of the bottom of the left hind paw. EE significantly reduced the duration of mechanical hypersensitivity and anxiety-related behavior and the expression of NR2B receptors as compared to the standard condition. Furthermore, EE significantly increased 2-arachidonoylglycero (2-AG) levels at 7 d in the inflammatory pain mice as compared to the standard condition, and the effect of EE on the behavior and the expression of NR2B receptors was abolished by intraperitoneal injection of AM281 (a selective antagonist of CB1 receptor). Elevated 2-AG levels by intraperitoneal injection of JZL184 (a selective inhibitor of MAGL, the enzyme responsible for 2-AG hydrolysis) produced the same effect as EE. Results from this study provide the evidence that EE mimics endocannabinoids to take analgesic and anti-anxiety activities by decreasing the expression of the NR2B receptors via the CB1 receptor in the thalamus, pending further studies.


Assuntos
Ansiolíticos , Endocanabinoides , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Regulação para Baixo , Endocanabinoides/metabolismo , Camundongos , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Sci Rep ; 11(1): 1454, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446901

RESUMO

Tramadol is an opioid used as an analgesic for treating moderate or severe pain. The long-term use of tramadol can induce several adverse effects. The toxicological mechanism of tramadol abuse is unclear. Limited literature available indicates the change of proteomic profile after chronic exposure to tramadol. In this study, we analyzed the proteomic and metabolomic profile by TMT-labeled quantitative proteomics and untargeted metabolomics between the tramadol and the control group. Proteomic analysis revealed 31 differential expressed serum proteins (9 increased and 22 decreased) in tramadol-treated mice (oral, 50 mg/kg, 5 weeks) as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: enzyme inhibitor-associated proteins (i.e. apolipoprotein C-III (Apoc-III), alpha-1-antitrypsin 1-2 (Serpina 1b), apolipoprotein C-II (Apoc-II), plasma protease C1 inhibitor, inter-alpha-trypsin inhibitor heavy chain H3 (itih3)); mitochondria-related proteins (i.e. 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. tubulin alpha-4A chain (TUBA4A), vinculin (Vcl)). And we found that the differential expressed proteins mainly involved in the pathway of the protein digestion and absorption. Metabolomics analysis revealed that differential expressed metabolites mainly involved in protein ingestion and absorption, fatty acid biosynthesis, steroid hormone biosynthesis and bile secretion. Our overall findings revealed that chronic exposure to tramadol changed the proteomic and metabolomic profile of mice. Moreover, integrated proteomic and metabolomic revealed that the protein digestion and absorption is the common enrichment KEGG pathway. Thus, the combination of proteomics and metabolomics opens new avenues for the research of the molecular mechanisms of tramadol toxicity.


Assuntos
Proteínas Sanguíneas/metabolismo , Metaboloma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Tramadol/efeitos adversos , Tramadol/farmacologia , Animais , Masculino , Camundongos , Proteoma/metabolismo
7.
Sci Rep ; 10(1): 18065, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093634

RESUMO

Outbreaks of gummy stem blight (GSB), an emerging seed pumpkin disease, have increased in number and have become more widespread in recent years. Previously we reported that Stagonosporopsis cucurbitacearum (Sc.) is the dominant fungal cause of pumpkin seedling GSB in Northeast China, where it has greatly reduced crop yields in that region. Here, high-throughput whole-genome sequencing and assembly of the Sc. genome were conducted toward revealing pathogenic molecular regulatory mechanisms involved in fungal growth and development. Zq-1 as representative Sc. strain, DNA of Zq-1was prepared for genomic sequencing, we obtained 5.24 Gb of high-quality genomic sequence data via PacBio RS II sequencing. After sequence data was processed to filter out low quality reads, a hierarchical genome-assembly process was employed that generated a genome sequence of 35.28 Mb in size. A total of 9844 genes were predicted, including 237 non-coding RNAs, 1024 genes encoding proteins with signal peptides, 2066 transmembrane proteins and 756 secretory proteins.Transcriptional identification revealed 54 differentially expressed secretory proteins. Concurrently, 605, 130 and 2869 proteins were matched in the proprietary databases Carbohydrate-Active EnZymes database (CAZyme), Transporter Classification Database (TCDB) and Pathogen-Host Interactions database (PHI), respectively. And 96 and 36 DEGs were identified form PHI database and CAZyme database, respectively. In addition, contig00011.93 was an up-regulated DEG involving ATP-binding cassette metabolism in the procession of infection. In order to test relevance of gene predictions to GSB, DEGs with potential pathogenic relevance were revealed through transcriptome data analysis of Sc. strains pre- and post-infection of pumpkin. Interestingly, Sc. and Leptosphaeria maculans (Lm.) exhibited relatively similar with genome lengths, numbers of protein-coding genes and other characteristics. This work provides a foundation for future exploration of additional Sc. gene functions toward the development of more effective GSB control strategies.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Cucurbita/microbiologia , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Ascomicetos/crescimento & desenvolvimento , China , Produção Agrícola , Interações Hospedeiro-Patógeno/genética , Sequenciamento Completo do Genoma
8.
Forensic Sci Res ; 5(2): 165-169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32939432

RESUMO

Duchenne muscular dystrophy (DMD) is one of the most common and severest muscular dystrophies. Although it can be a cause of death when associated with cardiac muscle and/or respiratory muscles, no cases of sudden deaths in the setting of undiagnosed DMD with cardiac involvement have been reported in the literatures. Previous studies showed that N-terminal-proBNP (NT-proBNP) was a robust laboratory biomarker to diagnose and monitor cardiac failure in clinical situations, suggesting that it may be used as an auxiliary indicator for diagnosis on left ventricular dysfunction in sudden cardiac deaths in forensic settings. Here, we reported a case of 29-year-old man who died suddenly. Autopsy revealed that muscles of the body were almost replaced by fatty and fibrotic tissues. The heart was enlarged with disarray and degeneration of cardiomyocytes in cardiac muscle. Total absence of dystrophin was detected by immunohistochemical staining, which confirmed DMD. Postmortem biochemical test of pericardial fluid revealed a high level of NT-proBNP, indicating dysfunction of the left ventricle before death. The cause of death was certified as an early dilated cardiomyopathy (DCM)/dysfunction of the left ventricle secondary to DMD, suggesting that sudden cardiac death with cardiac dysfunction could be identified by immunohistochemical method in combination with pericardial fluid NT-proBNP determination after systemic autopsy.

9.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074988

RESUMO

Among all cereals, rice is highly sensitive to cold stress, especially at the germination stage, which adversely impacts its germination ability, seed vigor, crop stand establishment, and, ultimately, grain yield. The dissection of novel quantitative trait loci (QTLs) or genes conferring a low-temperature germination (LTG) ability can significantly accelerate cold-tolerant rice breeding to ensure the wide application of rice cultivation through the direct seeding method. In this study, we identified 11 QTLs for LTG using 144 recombinant inbred lines (RILs) derived from a cross between a cold-tolerant variety, Lijiangxintuanheigu (LTH), and a cold-sensitive variety, Shennong265 (SN265). By resequencing two parents and RIL lines, a high-density bin map, including 2,828 bin markers, was constructed using 123,859 single-nucleotide polymorphisms (SNPs) between two parents. The total genetic distance corresponding to all 12 chromosome linkage maps was 2,840.12 cm. Adjacent markers were marked by an average genetic distance of 1.01 cm, corresponding to a 128.80 kb physical distance. Eight and three QTL alleles had positive effects inherited from LTH and SN265, respectively. Moreover, a pleiotropic QTL was identified for a higher number of erected panicles and a higher grain number on Chr-9 near the previously cloned DEP1 gene. Among the LTG QTLs, qLTG3 and qLTG7b were also located at relatively small genetic intervals that define two known LTG genes, qLTG3-1 and OsSAP16. Sequencing comparisons between the two parents demonstrated that LTH possesses qLTG3-1 and OsSAP16 genes, and SN-265 owns the DEP1 gene. These comparison results strengthen the accuracy and mapping resolution power of the bin map and population. Later, fine mapping was done for qLTG6 at 45.80 kb through four key homozygous recombinant lines derived from a population with 1569 segregating plants. Finally, LOC_Os06g01320 was identified as the most possible candidate gene for qLTG6, which contains a missense mutation and a 32-bp deletion/insertion at the promoter between the two parents. LTH was observed to have lower expression levels in comparison with SN265 and was commonly detected at low temperatures. In conclusion, these results strengthen our understanding of the impacts of cold temperature stress on seed vigor and germination abilities and help improve the mechanisms of rice breeding programs to breed cold-tolerant varieties.


Assuntos
Ligação Genética , Germinação/genética , Oryza/genética , Estresse Fisiológico , Mapeamento Cromossômico , Temperatura Baixa , DNA de Plantas/química , DNA de Plantas/metabolismo , Genótipo , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
10.
Int J Clin Exp Pathol ; 13(12): 3111-3119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425111

RESUMO

Psoriasis is reportedly modulated by the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) or vascular endothelial growth factor/p21-activated kinase 1 (VEGF/PAK1) pathways. However, no research has evaluated the expression of JAK/STAT and VEGF/PAK1 signaling pathway molecules in human psoriasis skin tissue concurrently. We investigated the expression of autocrine STAT1, STAT3, VEGF, suppressor of cytokine signaling-1 (SOCS1), SOCS3, and PAK1 in psoriatic tissues. Skin biopsies were retrospectively collected from 55 patients with psoriasis from the tissue biobank. Skin biopsies from 40 healthy volunteers undergoing plastic surgery were used as controls. Immunohistochemical staining revealed that STAT1, STAT3, SOCS1, SOCS3, VEGF, and PAK1 were present at significantly higher levels in the psoriasis samples compared to the control group. Similarly, the mRNA expression of these signaling molecules was also significantly upregulated in psoriatic skin. Additionally, some of the molecules in these two signaling pathways exhibited significant positive correlations. In summary, we present pilot evidence that JAK/STAT and VEGF/PAK1 signaling molecules are expressed in psoriasis, which may provide topical treatment targets for this disease.

11.
Life Sci ; 230: 55-67, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128135

RESUMO

AIMS: Cannabinoid type 2 (CB2) receptor activation has been shown to attenuate IRI in various organs. NF-E2-related factor (Nrf2) is an anti-oxidative factor that plays multiple roles in regulating cellular redox homeostasis and modulating cell proliferation and differentiation. The protective effects of CB2 receptor activation on skeletal muscle IRI and the underlying mechanism that involves Nrf2 signaling remain unknown. MAIN METHODS: We evaluated the in vivo effect of CB2 receptor activation by the CB2 receptor agonist AM1241 on IR-induced skeletal muscle damage and early myogenesis. We also assessed the effects of CB2 receptor activation on C2C12 myoblasts differentiation and H2O2-induced C2C12 myoblasts damage in vitro, with a focus on the mechanism of Nrf2 signaling. KEY FINDINGS: Our results showed that CB2 receptor activation reduced IR-induced histopathological lesions, edema, and oxidative stress 1 day post-injury and accelerated early myogenesis 4 days post-injury in mice. Nrf2 knockout mice that were treated with AM1241 exhibited deteriorative skeletal muscle oxidative damage and myogenesis. In vitro, pretreatment with AM1241 significantly increased the expression of Nrf2 and its nuclear translocation, attenuated the decrease in H2O2-induced C2C12 cell viability, and decreased reactive oxygen species generation and apoptosis. CB2 receptor activation also significantly enhanced C2C12 myoblasts differentiation, which was impaired by silencing Nrf2. SIGNIFICANCE: Overall, CB2 receptor activation protected skeletal muscle against IRI by ameliorating oxidative damage and promoting early skeletal muscle myogenesis, which was partly via Nrf2 signaling.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Receptor CB2 de Canabinoide/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Canabinoides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
12.
Histol Histopathol ; 34(7): 745-753, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30516266

RESUMO

HIPK2 is an evolutionarily conserved serine/threonine kinase and is considered a co-regulator of an increasing number of transcription factors modulating a variety of cellular processes, including inflammation, proliferation and fibrosis. Skeletal muscle injuries repair is an overlapping event between inflammation and tissue repair. There are no reports about HIPK2 expression in skeletal muscles after trauma. A foundational study on distribution and time-dependent expression of HIPK2 was performed by immunohistochemical staining, Western blotting and quantitative real-time PCR, which is expected to obtain a preliminary insight into the functions of HIPK2 during the repair of contused skeletal muscle in mice. An animal model of skeletal muscle contusion was established in 50 C57B6/L male mice. Samples were taken at 1, 3, 5, 7, 9, 14, 17, 21 and 28 days after contusion, respectively (5 mice at each posttraumatic interval). 5 mice were employed as control. No HIPK2-positive staining was detected in uninjured skeletal muscle. Intensive immunoreactivties of HIPK2 were observed in polymorphonuclear cells, round-shaped mononuclear cells, regenerated multinucleated myotubes and spindle-shaped fibroblastic cells in the contused tissue. The HIPK2-positive cells were identified as neutrophils, macrophages and myofibroblasts by double immunofluorescent procedure. HIPK2 protein and mRNA expression were remarkably up-regulated after contusion by Western blotting and qPCR analysis. The results demonstrated that the expression of HIPK2 is distributed in certain cell types and is time-dependently expressed in skeletal muscle after contusion, which suggested that HIPK2 may participate in the whole process of skeletal muscle wound healing, including inflammatory response, muscle regeneration and fibrogenesis.


Assuntos
Contusões/enzimologia , Músculo Esquelético/enzimologia , Músculo Esquelético/lesões , Proteínas Serina-Treonina Quinases/metabolismo , Cicatrização , Animais , Contusões/patologia , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibrose , Inflamação/enzimologia , Inflamação/patologia , Macrófagos/citologia , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/patologia , Miofibroblastos/citologia , Miofibroblastos/enzimologia , Neutrófilos/citologia , Neutrófilos/enzimologia , Regeneração , Fatores de Tempo
13.
Neurosci Lett ; 696: 127-131, 2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30576711

RESUMO

Traumatic brain injury (TBI) is an increasingly prevalent condition affecting people of all ages and genders. The impairment of spatial learning and memory is one of the most common effects of TBI. Unfortunately, it currently lacks effective therapeutic interventions. The endocannabinoid (EC) system regulates a diverse array of physiological processes. Here, we found a 6.7-fold increase of 2-AG levels at 1 d post-TBI, declining thereafter. After 5 d, the levels were still 3.3-fold higher than in the controls. AM281, a CB1 receptor antagonist, reversed the TBI-reduced NMDA receptor subunits NR2B in the hippocampus and ameliorate the spatial learning and memory impairment at 7 d post-TBI, suggesting CB1 receptor is involved in the TBI-induced hippocampal-dependent spatial learning and memory impairment.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Aprendizagem Espacial/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL
14.
J Inflamm (Lond) ; 15: 25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534003

RESUMO

BACKGROUND: The anti-inflammatory properties of the cannabinoid 2 receptor (CB2R) in injury and inflammatory diseases have been widely substantiated. Specifically, the anti-inflammatory effect of CB2R may be achieved by regulating macrophage polarisation. Several research findings suggested that the activation of CB2R could attenuate inflammation by reducing pro-inflammatory M1 macrophage polarisation and promoting anti-inflammatory M2 polarisation. However, considering CB2R inhibits fibrosis and M2 promotes fibrosis, that the activation of CB2R may lead to an increase in M2 macrophages seems contradictory. Therefore, we hypothesised that the activation of CB2R to attenuate inflammation is not achieved by up-regulating M2 macrophages. METHODS: We established an incised wound model using mouse skin and used this to evaluate the effect of CB2R agonists (JWH133 or GP1a) and an antagonist (AM630) on wound healing. At various post-injury intervals, we used western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction assays to determine CB2R protein expression, M1/M2 macrophage infiltration, and the protein and gene expression of M1/M2-associated markers and cytokines in skin lesions. RESULTS: Activation of CB2R significantly reduced M1 macrophage infiltration and slightly increased M2 macrophage infiltration. Similarly, gene expression and protein levels of M1-associated markers and cytokines (interleukin [IL]-6, IL-12, CD86 and inducible nitric oxide synthase) were significantly down-regulated after CB2R agonist administration; in contrast, markers and cytokines were increased in the CB2R antagonist-treated group. Conversely, the administration of agonists slightly increased gene expression and protein levels of M2-associated markers and cytokines (IL-4, IL-10, CD206 and arginase-1 [Arg-1]); however, a statistical significance at most time points post-injury was not noted. CONCLUSION: In summary, our findings suggested that during incised skin wound healing in mice, increased levels of CB2R may affect inflammation by regulating M1 rather than M2 macrophage subtype polarisation. These results offer a novel understanding of the molecular mechanisms involved in the inhibition of inflammation by CBR2 that may lead to new treatments for cutaneous inflammation.

15.
Inflammation ; 41(2): 474-484, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29196961

RESUMO

The α7 nicotinic acetylcholine receptor (α7-nAChR) is associated with inflammation, re-epithelialization, and angiogenesis in wound healing process. A recent study demonstrated that PNU-282987, a selective agonist of α7-nAChR, accelerates the repair of diabetic excisional wounds. Whether α7-nAChR activation promotes non-diabetic wounds healing is unknown. The aim of this study was to evaluate the effects of α7-nAChR activation on non-diabetic wound healing. The effects were evaluated in two wound models. In the first model, the wound was covered with a semi-permeable transparent dressing. In the second model, the wound was left uncovered. In both models, the mice were randomly assigned to two treatment groups: saline or PNU282987 (25 mice in each group). In covered wounds, we found that α7-nAChR activation inhibited re-epithelialization, angiogenesis, and epithelial cells proliferation, promoted neo-epithelial detachment, and suppressed neutrophil infiltration and the expression of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). However, in uncovered wounds, we observed that α7-nAChR activation promoted re-epithelialization and angiogenesis, inhibited neutrophil infiltration and the expression of high mobility group box (HMGB)-1, epidermal growth factor (EGF), and VEGF. In conclusion, this data demonstrated that α7-nAChR activation inhibited wound healing in covered wounds but played an opposite role in uncovered wounds. The opposite effect might be primarily due to inhibition of inflammation.


Assuntos
Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/uso terapêutico , Animais , Bandagens/efeitos adversos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Reepitelização/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas
16.
PLoS One ; 12(7): e0181037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715430

RESUMO

Japonica rice mainly distributes in north of China, which accounts for more than half of the total japonica rice cultivated area of China. High yield, good grain quality and early heading date were the main breeding traits and commercial property in this region. We performed re-sequencing and genome wide variation analysis of one typical northern japonica rice variety Longdao24 and its parents (Longdao5 and Jigeng83) using the Illumina sequencing technology. 53.17 G clean bases were generated and more than 96.8% of the reads were mapped to the genomic reference sequence. An overall average effective depth of 43.67 × coverage was achieved. We identified 420,475 SNPs, 95,624 InDels, and 14,112 SVs in Longdao24 genome with the genomic sequence of the japonica cultivar Nipponbare as reference. We identified 361,117 SNPs and 81,488 InDels between Longdao24 genome and Longdao5 genome. We also detected 428,908 SNPs and 97,209 InDels between Longdao24 genome and Jigeng83 genome. Twenty-two yield related genes, twenty-two grain quality related genes and thirty-nine heading date genes were analyzed in Longdao24. The alleles of Gn1a, EP3, SCM2, Wx, ALK, OsLF and Hd17 came from the female parent Longdao5. The other alleles of qGW8, SSIVa, SBE3, SSIIIb, SSIIc, DTH2, Ehd3 and OsMADS56 came from the male parent Jigeng83. These results will help us to research the genetics basis of yield, grain quality and early heading date in northern rice of China.


Assuntos
Variação Genética , Genoma de Planta , Oryza/genética , Alelos , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Frequência do Gene , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Amido/química , Amido/metabolismo
17.
Fa Yi Xue Za Zhi ; 32(1): 7-12, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-27295849

RESUMO

OBJECTIVE: To investigate the expressions and time-dependent changes of phosphatidylinositol-3-kinase (PI3K), phospho-PI3K (p-PI3K), protein kinase B (PKB/Akt) and phospho-Akt (p-Akt) during wound healing process of mice skin. METHODS: The changes of PI3K, p-PI3K, Akt and p-Akt expression in skin wound were detected by immunohistochemistry, Western blotting and real-time PCR. RESULTS: Immunohistochemistry showed the expression of PI3K and p-Akt were observed in mononuclear and fibroblast after skin wound, and reached peak in reconstruction. The positive bands of PI3K, p-PI3K, Akt and p-Akt were observed in all time points of the wound healing process by Western blotting. The expression peak of p-PI3K and p-Akt showed in inflammation and proliferation; the expression peak of PI3K and Akt in reconstruction. Real-time PCR showed the expression peak of PI3K mRNA in inflammation and reconstruction and the peak of Akt mRNA in reconstruction. CONCLUSION: During the wound healing process, the expressions of PI3K, Akt, p-PI3K and p-Akt show different changes with significant correlation to wound time. The expression of PI3K/Akt may be a valuable marker for wound time estimation.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/lesões , Cicatrização , Animais , Western Blotting , Classe I de Fosfatidilinositol 3-Quinases , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Pele/enzimologia
18.
Eur J Pharmacol ; 786: 128-136, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27268717

RESUMO

Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-ß1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.


Assuntos
Indenos/farmacologia , Pirazóis/farmacologia , Reepitelização/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Animais , Linhagem Celular , Colágeno/metabolismo , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indenos/uso terapêutico , Indóis/farmacologia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Pirazóis/uso terapêutico , Receptor CB2 de Canabinoide/agonistas , Pele/metabolismo , Pele/fisiopatologia
19.
Mol Med Rep ; 13(4): 3441-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26935001

RESUMO

Studies have shown that cannabinoid CB2 receptors are involved in wound repair, however, its physiological roles in fibrogenesis remain to be elucidated. In the present study, the capacity of cannabinoid CB2 receptors in the regulation of skin fibrogenesis during skin wound healing was investigated. To assess the function of cannabinoid CB2 receptors, skin excisional BALB/c mice were treated with either the cannabinoid CB2 receptor selective agonist, GP1a, or antagonist, AM630. Skin fibrosis was assessed by histological analysis and profibrotic cytokines were determined by immunohistochemistry, immunofluorescence staining, reverse transcription­quantitative polymerase chain reaction and immunoblotting in these animals. GP1a decreased collagen deposition, reduced the levels of transforming growth factor (TGF)­ß1, TGF­ß receptor I (TßRI) and phosphorylated small mothers against decapentaplegic homolog 3 (P­Smad3), but elevated the expression of its inhibitor, Smad7. By contrast, AM630 increased collagen deposition and the expression levels of TGF­ß1, TßRI and P­Smad3. These results indicated that cannabinoid CB2 receptors modulate fibrogenesis and the TGF­ß/Smad profibrotic signaling pathway during skin wound repair in the mouse.


Assuntos
Receptor CB2 de Canabinoide/metabolismo , Dermatopatias/patologia , Cicatrização , Actinas/genética , Actinas/metabolismo , Animais , Western Blotting , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Dermatopatias/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização/efeitos dos fármacos
20.
J Forensic Leg Med ; 39: 138-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26889946

RESUMO

Wound age estimation is a classic but still modern theme in forensic practice. More experiments on different types of wound are needed to further improve its accuracy. In this study, mouse skin excisional wounds were created to simulate dermal defective injury. The neutrophil and macrophage infiltration, fibroblast and fibrocyte accumulation as well as their myofibroblastic transformation were examined. In addition, some wound healing-related molecules, including IL-1ß, IL-6, TNF-α, IFN-γ, MCP-1, CXCL12, VEGF-A, EGF, KGF, pro-col Iα2 and pro-col IIIα1, were quantified by Western blotting and real-time quantitative PCR. Neutrophils and macrophages profoundly infiltrated in the wound at 12 h-1 d and 3 d-10 d respectively. Fibroblasts and fibrocytes accumulated in the wound from 3 d, and transformed into contractile myofibroblasts from 5 d post injury. The transformation ratios of fibroblasts and fibrocytes were highest at 7 d-10 d and 10 d respectively (over 50%). MCP-1 and CXCL12 increased from 12 h to 5 d, and IL-1ß, TNF-α and pro-col IIIα1 up to 7 d. IL-6 and VEGF-A increased from 12 h to 1 d-10 d. Pro-col Iα2 increased from 7 d to 21 d. IFN-γ decreased from 12 h to 10 d. By comprehensive analysis of these factors from the perspective of morphometrics, protein and gene expressions, this study provided us with fundamental information for wound age estimation, especially in the wounds with full-thickness defection.


Assuntos
Pele/lesões , Pele/metabolismo , Cicatrização/fisiologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Patologia Legal , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...