Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(27): 16484-16492, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771196

RESUMO

A vacuum ultraviolet free electron laser (VUV-FEL) photoionization aerosol mass spectrometer (AMS) has been developed for online measurement of neutral compounds in laboratory environments. The aerosol apparatus is mainly composed of a smog chamber and a reflectron time-of-flight mass spectrometer (TOF-MS). The indoor smog chamber had a 2 m3 fluorinated ethylene propylene film reactor placed in a temperature- and humidity-controlled room, which was used to generate the aerosols. The aerosols were sampled via an inlet system consisting of a 100 µm orifice nozzle and aerodynamic lenses. The application of this VUV-FEL AMS to the α-pinene ozonolysis under different concentrations reveals two new compounds, for which the formation mechanisms are proposed. The present findings contribute to the mechanistic understanding of the α-pinene ozonolysis in the neighborhood of emission origins of α-pinene. The VUV-FEL AMS method has the potential for chemical analysis of neutral aerosol species during the new particle formation processes.

2.
J Phys Chem Lett ; 12(9): 2259-2265, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33636082

RESUMO

Elucidating the dynamic couplings of hydrogen bonds remains an important and challenging goal for spectroscopic studies of bulk systems, because their vibrational signatures are masked by the collective effects of the fluctuation of many hydrogen bonds. Here we utilize size-selected infrared spectroscopy based on a tunable vacuum ultraviolet free electron laser to unmask the vibrational signatures for the dynamic couplings in neutral trimethylamine-water and trimethylamine-methanol complexes, as microscopic models with only one single hydrogen bond holding two molecules. Surprisingly broad progression of OH stretching peaks with distinct intensity modulation over ∼700 cm-1 is observed for trimethylamine-water, while the dramatic reduction of this progression in the trimethylamine-methanol spectrum offers direct experimental evidence for the dynamic couplings. State-of-the-art quantum mechanical calculations reveal that such dynamic couplings are originated from strong Fermi resonance between the stretches of hydrogen-bonded OH and several motions of the solvent water/methanol, such as translation, rocking, and bending, which are significant in various solvated complexes commonly found in atmospheric and biological systems.

3.
Proc Natl Acad Sci U S A ; 117(27): 15423-15428, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541029

RESUMO

Infrared spectroscopic study of neutral water clusters is crucial to understanding of the hydrogen-bonding networks in liquid water and ice. Here we report infrared spectra of size-selected neutral water clusters, (H2O) n (n = 3-6), in the OH stretching vibration region, based on threshold photoionization using a tunable vacuum ultraviolet free-electron laser. Distinct OH stretch vibrational fundamentals observed in the 3,500-3,600-cm-1 region of (H2O)5 provide unique spectral signatures for the formation of a noncyclic pentamer, which coexists with the global-minimum cyclic structure previously identified in the gas phase. The main features of infrared spectra of the pentamer and hexamer, (H2O) n (n = 5 and 6), span the entire OH stretching band of liquid water, suggesting that they start to exhibit the richness and diversity of hydrogen-bonding networks in bulk water.

4.
J Phys Chem Lett ; 11(3): 851-855, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944117

RESUMO

Infrared (IR) spectroscopy provides detailed structural and dynamical information on clusters at the fingerprint level. Herein, we demonstrate the capability of a tunable vacuum ultraviolet free electron laser (VUV-FEL) for selective detection of a wide variety of neutral water clusters and for recording the size-dependent IR spectra. The present technique does not require the presence of an ultraviolet chromophore or a dipole moment and is generally applicable for IR spectroscopy of neutral clusters free from confinement. To show the features of our technique, we report here the IR spectra of neutral water dimer in the OH stretch region, providing benchmarks for theoretical study of the accurate description of hydrogen bonding structures involved in liquid water and ice. Quantum mechanical calculations on a 12-dimensional ab initio potential energy surface are utilized to simulate the anharmonic vibrational spectra of water dimer. These results help to resolve the controversy of the exact vibrational assignment of each band feature of the water dimer.

5.
J Phys Chem A ; 123(46): 10109-10115, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31660735

RESUMO

Infrared spectra of the neutral dimethylamine-methanol cluster, DMA-CH3OH, were measured in the spectral range of 2800-3900 cm-1 using an infrared-vacuum ultraviolet (IR-VUV) scheme. Quantum chemical calculations and ab initio molecular dynamic (AIMD) simulations were carried out to understand the experimental spectral features. Experimental and theoretical results reveal the coexistence of N···HO and O···HN hydrogen-bonded structures. AIMD simulations show that the methyl group in methanol internally rotates around the N···O axis, addressing the dynamic effect of the fluctuation of hydrogen bonds on the vibrational features. The bonding analysis was performed to elucidate the nature of the intermolecular interaction between DMA and CH3OH. The present work provides the fundamental understanding of hydrogen-bonding networks in the amine-alcohol complexes.

6.
J Chem Phys ; 150(6): 064317, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769977

RESUMO

Infrared-vacuum ultraviolet (IR-VUV) spectra of neutral dimethylamine clusters, (DMA)n (n = 2-5), were measured in the spectral range of 2600-3700 cm-1. The experimental IR-VUV spectra show NH stretch modes gradually redshift to 3200-3250 cm-1 with the increase in the cluster size and complex Fermi Resonance (FR) pattern of the CH3 group in the 2800-3000 cm-1 region. Ab initio anharmonic vibrational calculations were performed on low-energy conformers of (DMA)2 and (DMA)3 to examine vibrational coupling among CH/NH and to understand the Fermi resonance pattern in the observed spectra features. We found that the redshift of NH stretching mode with the size of DMA cluster is moderate, and the overtone of NH bending modes is expected to overlap in frequency with the CH stretching fundamental modes. The FR in CH3 groups is originated from the strong coupling between CH stretching fundamental and bending overtone within a CH3 group. Well-resolved experimental spectra also enable us to compare the performance of ab initio anharmonic algorithms at different levels.

7.
J Phys Chem A ; 121(38): 7176-7182, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28892385

RESUMO

The methylamine dimer, (CH3NH2)2, is a model system to study the CH3 and NH2 spectral patterns in the neutral microsolvated systems relevant to chemical biology, atmospheric chemistry, and catalysis. We report infrared-vacuum ultraviolet spectroscopic measurements to probe the neutral (CH3NH2)2. Quantum chemical calculations and ab initio molecular dynamics simulations were performed to understand the observed spectral features. Experimental and theoretical results indicate the likely coexistence of both cis and trans structures. A salient feature of this work is that the peak widths are not significantly affected by the structural transformation and the fluctuation of hydrogen bond distance, allowing the stretching modes to be clearly resolved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...