Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984398

RESUMO

The dependence of bendability on crystallographic orientations and texture evolution was investigated in a strongly textured Mg-9Al extrusion plate by bending along four directions. Results show that the bars have relatively small and reasonably close bendability when bent along the extrusion direction, transverse direction, and through-thickness direction. In contrast, the bendability of the 45° bar is much larger. Microstructure examination indicates that twins are prevalent in all bars. Furthermore, a detailed analysis of deformation mechanisms suggests that the initial texture transforms towards a basal texture during bending. Nevertheless, the texture transformation efficiency is drastically lower when basal slip-in contrast to tensile twinning-is the dominant deformation mechanism. The difference in texture evolution efficiency was used to rationalize the varied bendability along different directions. The findings of this provide insights into improving the bendability of magnesium alloys.

2.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676375

RESUMO

In this paper, the influence of long-period stacked ordered (LPSO) phases on the electrochemical impedance spectroscopy (EIS) of a Mg-Gd-Y-Zn-Zr-Ag alloy in 0.9 wt.% NaCl was investigated. The Mg-6Gd-3Y-1Zn-0.5Zr-0.3Ag (wt.%) alloy samples with and without LPSO phases in the grain interior (HOMO and LPSO, respectively) were prepared using different heat treatments. The EIS results showed that both the HOMO and LPSO samples' Nyquist diagrams contained two inductive loops. However, in the Nyquist plots of the LPSO samples, the inductive loops at 1.71-0.67 Hz appeared in the first quadrant rather than the fourth quadrant. Analysis of the fitting parameters illustrated that the abnormal shape of the inductive loops is related to greater values of the surface film capacitance Cf and double layer capacitance Cdl in the LPSO samples. Further investigations through corrosion morphology observation indicated that the greater values of Cf and Cdl in the LPSO samples resulted from the existence of intragranular LPSO phases that created more film-free areas. The above results show that a better understanding of the relationship between the inductive impedance and corrosion morphology of a Mg-6Gd-3Y-1Zn-0.5Zr-0.3Ag alloy in 0.9 wt.% NaCl solution was attained.

3.
Materials (Basel) ; 12(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575063

RESUMO

Effects of T5 treatment on microstructure and mechanical properties at elevated temperature of hot-ring-rolled (HRRed) AZ80-Ag magnesium alloy were systematically investigated. Results show that, after aging at 175 °C for 36 h, discontinuous and continuous precipitates form inside grains, with the former one taking up a volume fraction of ~64.9%. T5 treatment improves the tensile strength at ambient temperature of the alloy but weakens its tensile strength and creep resistance at elevated temperatures (120-175 °C), indicating opposite effects of T5 on mechanical properties at ambient and elevated temperatures. During creep at 120-175 °C and under 70-90 MPa, the dynamic precipitation process in HRRed specimen is accelerated with increasing temperature. At 150-175 °C massive nucleation and growth of dynamic discontinuous precipitates could result in an atypical primary creep stage, consisting of deceleration and acceleration creep stages, which is reported in wrought Mg-Al-based alloy for the first time. Such primary creep stage can be eliminated by T5 treatment. Besides, diffusion-controlled dislocation creep is the dominant creep mechanism for both HRRed and T5 specimens.

4.
Artigo em Inglês | MEDLINE | ID: mdl-17718336

RESUMO

This article analyzes the performance of a piezoelectric energy harvester in the flexural mode for scavenging ambient vibration energy. The energy harvester consists of a piezoelectric bimorph plate with a central-attached mass. The linear piezoelectricity theory is applied to evaluate the performance dependence upon the physical and geometrical parameters of the model bimorph plate. The analytical solution for the flexural motion of the piezoelectric bimorph plate energy harvester shows that the output power density increases initially, reaches a maximum, then decreases monotonically with the increasing load impedance, which is normalized by a parameter that is a simple combination of the physical and geometrical parameters of the scavenging structure, the bimorph plate, and the frequency of the ambient vibration, underscoring the importance for the load circuit to have the impedance desirable by the scavenging structure. The numerical results illustrate the considerably enhanced performances by adjusting the physical and geometrical parameters of the scavenging structure.

5.
Artigo em Inglês | MEDLINE | ID: mdl-17441598

RESUMO

We analyzed the weakly nonlinear behavior of a plate thickness-shear mode piezoelectric transformer near resonance. An approximate analytical solution was obtained. Numerical results based on the analytical solution are presented. It is shown that on one side of the resonant frequency the input-output relation becomes nonlinear, and on the other side the output voltage experiences jumps.


Assuntos
Desenho Assistido por Computador , Eletrônica , Modelos Teóricos , Dinâmica não Linear , Transdutores , Ultrassom , Simulação por Computador , Elasticidade , Impedância Elétrica , Mecânica , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...