Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 48(1): 238-249, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36063295

RESUMO

Lead (Pb) is considered to be a major environmental pollutant and occupational health hazard worldwide which may lead to neuroinflammation. However, an effective treatment for Pb-induced neuroinflammation remains elusive. The aim of this study was to investigate the mechanisms of Pb-induced neuroinflammation, and the therapeutic effect of sodium para-aminosalicylic acid (PAS-Na, a non-steroidal anti-inflammatory drug) in rat cerebral cortex. The results indicated that Pb exposure induced pathological damage in cerebral cortex, accompanied by increased levels of inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Moreover, Pb decreased the expression of silencing information regulator 2 related enzyme 1 (SIRT1) and brain-derived neurotrophic factor (BDNF), and increased the levels of high mobile group box 1 (HMGB1) expression and p65 nuclear factor-κB (NF-κB) phosphorylation. PAS-Na treatment ameliorated Pb-induced histopathological changes in rat cerebral cortex. Moreover, PAS-Na reduced the Pb-induced increase of TNF-α and IL-1ß levels concomitant with a significant increase in SIRT1 and BDNF levels, and a decrease in HMGB1 and the phosphorylation of p65 NF-κB expression. Thus, PAS-Na may exert anti-inflammatory effects by mediating the SIRT1/HMGB1/NF-κB pathway and BDNF expression. In conclusion, in this novel study PAS-Na was shown to possess an anti-inflammatory effect on cortical neuroinflammation, establishing its efficacy as a potential treatment for Pb exposures.


Assuntos
Ácido Aminossalicílico , Proteína HMGB1 , Ratos , Animais , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Sódio , Sirtuína 1/metabolismo , Chumbo/toxicidade , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Anti-Inflamatórios
2.
Ecotoxicol Environ Saf ; 241: 113829, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068756

RESUMO

Lead (Pb) is a naturally occurring heavy metal, which can damage the brain and affect learning and memory. Sodium para-aminosalicylic acid (PAS-Na), a non-steroidal anti-inflammatory drug, can readily cross the blood-brain barrier. Our previous studies have found that PAS-Na alleviated Pb-induced hippocampal ultrastructural damage and neurodegeneration, but the mechanism has yet to be defined. Here, we investigated the molecular mechanisms that mediate Pb-induced apoptosis in hippocampal neurons, and the efficacy of PAS-Na in alleviating its effects. This work showed that juvenile developmental Pb exposure impaired rats cognitive ability by inducing apoptotic cell death in hippocampal neurons. Pb-induced neuronal apoptosis was accompanied by increased inositol 1,4,5-trisphosphate receptor (IP3R) expression and enhanced intracellular calcium [Ca2+]i levels, which resulted in increased phosphorylation of neuronal apoptosis signal-regulating kinase 1 (ASK1) and p38. Activation of ASK1 and p38 was blocked by IP3R inhibitor and a Ca2+ chelator. Importantly, PAS-Na treatment improved the Pb-induced effects on cognitive deficits in rats, concomitant with rescued neuronal apoptosis. In addition, PAS-Na reduced the expression of IP3R and the ensuing increase in intracellular Ca2+ and decreased the phosphorylation of ASK1 and p38 in Pb-exposed neurons. Taken together, this study demonstrates that the IP3R-Ca2+-ASK1-p38 signaling pathway mediates Pb-induced apoptosis in hippocampal neurons, and that PAS-Na, at a specific dose-range, ameliorates these changes. Collectively, this study sheds novel light on the cellular mechanisms that mediate PAS-Na efficacy, laying the groundwork for future research to examine the treatment potential of PAS-Na upon Pb poisoning.


Assuntos
Ácido Aminossalicílico , Ácido Aminossalicílico/farmacologia , Animais , Apoptose , Hipocampo , Chumbo/toxicidade , Ratos , Transdução de Sinais , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...