Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 1016-1025, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387363

RESUMO

Visible-driven photocatalytic hydrogen production using narrow-bandgap semiconductors has great potential for clean energy development. However, the widespread use of these semiconductors is limited due to problems such as severe charge recombination and slow surface reactions. Herein, a quasi-type-II heterostructure was constructed by combining bifunctional Ni-based metal-organic framework (Ni-MOF) nanosheets with BDC (1,4-benzenedicarboxylic acid) linker coupled with Cu-In-Zn-S quantum dots (CIZS QDs). This heterostructure exhibited a prolonged charge carrier lifetime and abundant active sites, leading to significantly improved hydrogen production rate. The optimized rate achieved by the CIZS/Ni-MOF heterostructure was 2642 µmol g-1 h-1, which is 5.28 times higher than that of the CIZS QDs. This improved performance can be attributed to the quasi-type-II band alignment between the CIZS QDs and Ni-MOF, which facilitates effective delocalization of the photogenerated electrons within the system. Additional photoelectrochemical tests confirmed the well-maintained photoluminescence and prolonged charge carrier lifetime of the CIZS/Ni-MOF heterostructure. This study provides valuable insights into the use of multifunctional MOFs in the development of highly efficient composite photocatalysts, extending beyond their role in light harvesting and charge separation.

2.
Inorg Chem ; 62(33): 13587-13596, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37556168

RESUMO

Exploring low-cost and high-performance oxygen evolution reaction (OER) catalysts has attracted great attention due to their crucial role in water splitting. Here, a bifunctional Cu5FeS4/Ni3S2@NF catalyst was in situ formed on a nickel (Ni) foam toward efficient photoassisted electrocatalytic (P-EC) OER, which displays an ultralow overpotential of 260 mV at 30 mA cm-2 in alkaline solution, outperforming most previously reported Ni-based catalysts. It also shows great potential in degradation of antibiotics as an alternative anode reaction to OER owing to the prompt transfer of photogenerated holes. The photocurrent test and transient photovoltage spectroscopy indicate that the synergistic coupling of charge extraction and sinking effects in Cu5FeS4 and Ni3S2 is critical for boosting the OER activity via photoassistance. Electrochemical active surface area and electrochemical impedance spectroscopy tests further prove that the photogenerated electromotive force can effectively compensate the overpotential of OER. This work not only provides a good guidance for integrating photocatalysis and electrocatalysis, but also indicates the key role of synergistic extraction and utilization of photogenerated charge carriers in P-EC.

3.
Chem Commun (Camb) ; 59(23): 3435-3438, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36857644

RESUMO

A novel pretreatment strategy that can regulate the amount of oxygen vacancies (Ovac) across the wormlike-BiVO4 photoanode by photochemical and electrochemical co-processing. Upon decorating NiFeOx as an oxygen evolution cocatalyst for promoting the surface oxidation kinetics, a record-high photocurrent density of 6.42 mA cm-2 is obtained at 1.23 vs. RHE (100 mW cm-2).

4.
Int J Pharm ; 606: 120937, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34310960

RESUMO

Intracellular ions played prominent part in cell function and behavior. Disrupting intracellular ions homeostasis might switch ions signal from "regulating" to "destroying". Inspired by this, we introduced the ions interference strategy for tumor therapy. Herein, curcumin (CUR) and transferrin (Tf) co-loaded calcium peroxide nanoparticles (CaO2 NPs) were formulated. With tumor targeting ability, CaO2/Tf/CUR pinpointed tumor cells and then instantaneously decomposed in acidic lysosomes, concurrently accompanying with the release of Ca2+ and CUR, as well as the production of H2O2. Then H2O2 not only damaged structure of Tf to release Fe3+, but also was converted to hydroxyl radicals via ferric ions mediated Fenton reaction for ferroptosis. In addition, the released Ca2+ and CUR induced Ca2+ overload via exogenous and endogenous calcium ions accumulation, respectively, further activating mitochondria apoptosis signaling pathway for cell injury. Therefore, based on calcium and ferric ions interference strategy, the cascade catalytic CaO2/Tf/CUR offered synergistic combination of ferroptosis, Ca2+ overload therapy and chemotherapy, which held a great promise in cancer treatment.


Assuntos
Curcumina , Ferroptose , Nanopartículas , Cálcio , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Ferro
5.
Sci Total Environ ; 574: 1432-1438, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535570

RESUMO

Air pollution in transportation cabins has recently become a public concern. However, few studies assessed the exposure levels of suspected air pollutants including Volatile Organic Compounds (VOCs). This paper studied the exposure levels of in-carriage VOCs (benzene, toluene, ethylbenzene, xylene, styrene, formaldehyde, acetaldehyde, acetone and acrolein) in Shanghai, China and estimated the health risk in different conditions. The results indicated that VOCs concentrations in metro carriages varied from different train models, due to the difference in carriage size and ventilation system. The concentrations of aromatic VOCs in old metro carriage were 1-2 times higher than the new ones, as better paintings were used in new trains. Poor air circulation and ventilation in the underground track was likely to be the cause of higher VOCs levels (~10%) than the above-ground track. Lower aromatic compounds levels and higher carbonyls levels were observed in metro carriages at suburban areas than those at urban areas, likely due to less aromatic emission sources and more carbonyls emission sources in suburban areas. Acetone and acrolein were found to increase from 7.71 to 26.28µg/m3 with number of commuters increasing from 40 to 200 in the carriages. According to the acceptable level proposed by the World Health Organization (1×10-6-1×10-5), the life carcinogenic risk of commuters by subway (8.5×10-6-4.8×10-5) was little above the acceptable level in Shanghai. Further application of our findings is possible to act as a reference in facilitating regulations for metro systems in other cities around world, so that in-carriage air quality might be improved.


Assuntos
Poluentes Atmosféricos/análise , Exposição por Inalação/análise , Meios de Transporte , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados , China , Cidades , Monitoramento Ambiental , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...