Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(22): 5854-5861, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38804436

RESUMO

Tin oxide (SnO2) as electron transportation layer (ETL) has demonstrated remarkable performance applied in perovskite solar cells but still accommodated a host of defects such as oxygen vacancies, uncoordinated Sn4+ , and absorbed hydroxyl groups. Here, we use inorganic sodium thiosulfate Na2S2O3 to modify SnO2 nanoparticles in a bulk blending manner. Strong interaction between Na2S2O3 and SnO2 occurs, as reflected from the elemental chemical state change. The interaction has endowed the SnO2 film with better uniformity, increased conductivity, and more matched energy level with perovskite. Moreover, the modified SnO2 film as a substrate could promote the crystallization of perovskite by suppressing unreacted residual PbI2. The trap density from perovskite bulk to the SnO2 film across their interface has been effectively reduced, thus inhibiting the nonradiative recombination and promoting the transportation and extraction of charge carriers. Finally, the solar cell based on modified SnO2 has achieved a champion efficiency of 25.2%, demonstrating the effectiveness and potential of sulfur-containing molecules on optimizing the SnO2 property.

2.
Small ; : e2401834, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623962

RESUMO

Different facets in perovskite crystals exhibit distinct atomic arrangements, influencing their electronic, physical, and chemical properties. Perovskite films incorporating tin oxide (SnO2) as the electron transport layer face challenges in facet regulation. This study reveals that tea saponin (TS), a natural compound serves as a SnO2 modifier, facilitates optimal growth of perovskite crystals on the (111) facet. The modification promotes preferential crystal orientation through hydrogen bond and Lewis coordination. TS forms a chelate with SnO2, resulting in a smoother film and n-type doping, leading to improved carrier extraction and reduced defects. The TS-modified perovskite solar cells achieve a champion efficiency of 24.2%, leveraging from an obvious enhancement of open-circuit voltage (Voc) of 1.18 V and fill factor (FF) of 82.8%. The devices also demonstrate enhanced humidity tolerance and storage stability, ensuring improved stability without encapsulation.

3.
Small ; 20(15): e2305083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009483

RESUMO

Zero-dimensional (0D) organic metal halides comprising heterogeneous metal cations in single phase can achieve multiple luminous emissions enabling them toward multifunctional light-emitting applications. Herein, A novel single crystal of (C8H20N)4SbMnCl9 containing two luminescent centers of [SbCl5]2- pentahedrons and [MnCl4]2- tetrahedrons is reported. The large distance between Sb-Sb, Mn-Mn, and Sb-Mn as well as theory calculation indicate negligible interaction between individual centers, thus endowing (C8H20N)4SbMnCl9 with excitation-dependable and efficient luminescence. Under near-UV excitation, only orange emission originates from self-trapped excitons recombination in [SbCl5]2- pentahedron occurs with photoluminescence quantum yield (PLQY) of 91.5%. Under blue-light excitation, only green emission originating from 4T1-6A1 transition of Mn2+ in [MnCl4]2- tetrahedrons occurs with PLQY of 66.8%. Interestingly, upon X-ray illumination, both emissions can be fully achieved due to the high-energy photon absorption. Consequently, (C8H20N)4SbMnCl9 is employed as phosphors to fabricate white light-emitting diodes optically pumped by n-UV chip and blue-chip thanks to its excitation-dependable property. Moreover, it also shows promising performance as X-ray scintillator with low detection limit of 60.79 nGyair S-1, steady-state light yield ≈54% of commerical scintillaotr LuAG:Ce, high resolution of 13.5 lp mm-1 for X-ray imaging. This work presents a new structural design to fabricate 0D hybrids with multicolor emissions.

4.
Adv Sci (Weinh) ; 10(34): e2304889, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852944

RESUMO

Metal halide crystals are bright but hygroscopic scintillator materials that are widely used in X-ray imaging and detectors. Precipitating them in situ in glass to form glass ceramics (GCs) scintillator offers an efficient avenue for large-scale preparation, high spatial resolution, and excellent stability. However, precipitating a high fraction of metal halide nanocrystals in glass to maintain high light yield remains a challenge. Herein, an ionic-covalent hybrid network strategy for constructing GCs scintillator with high crystallinity (up to ≈37%) of BaCl2 : Eu2+ nanocrystals is presented. Experimental data and simulations of glass structure reveal that the Ba2+ -Cl- clustering promotes the high crystallization of BaCl2 nanocrystals. The ultralow phonon energy (≈200 cm-1 ) of BaCl2 nanocrystals and good Eu reduction effect enable high photoluminescence inter quantum efficiency (≈80.41%) in GC. GCs with varied crystallinity of BaCl2 : Eu2+ nanocrystals demonstrate efficient radioluminescence and tunable scintillator performance. They either outperform Bi4 Ge3 O14 single crystal by over 132% steady-state light yield or provide impressive X-ray imaging resolutions of 20 lp mm-1 . These findings provide a new design strategy for developing bright transparent GCs scintillators with a high fraction of metal halide nanocrystals for X-ray high-resolution imaging applications.

5.
Adv Mater ; 34(42): e2205458, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963008

RESUMO

Conventional energy-integration black-white X-ray imaging lacks the spectral information of X-ray photons. Although X-ray spectra (energy) can be distinguished by the photon-counting technique typically with CdZnTe detectors, it is very challenging to be applied to large-area flat-panel X-ray imaging (FPXI). Herein, multilayer stacked scintillators of different X-ray absorption capabilities and scintillation spectra are designed; in this scenario, the X-ray energy can be discriminated by detecting the emission spectra of each scintillator; therefore, multispectral X-ray imaging can be easily obtained by color or multispectral visible-light camera in a single shot of X-rays. To verify this idea, stacked multilayer scintillators based on several emerging metal halides are fabricated in a cost-effective and scalable solution process, and proof-of-concept multispectral (or multi-energy) FPXI are experimentally demonstrated. The dual-energy X-ray image of a "bone-muscle" model clearly shows the details that are invisible in conventional energy-integration FPXI. By stacking four layers of specifically designed multilayer scintillators with appropriate thicknesses, a prototype FPXI with four energy channels is realized, proving its extendibility to multispectral or even hyperspectral X-ray imaging. This study provides a facile and effective strategy to realize multispectral large-area flat-panel X-ray imaging.

6.
J Phys Chem Lett ; 13(15): 3431-3437, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35411775

RESUMO

Lead-free metal halide light-emitting diodes (LEDs) based on cesium copper halide (CsCu2I3) self-trapped-exciton (STE) emissions show great potential in lighting and color display applications, especially because of their nontoxicity and earth abundance. However, so far, the efficiency and color purity of CsCu2I3-based LEDs remain low. Here we demonstrate the emission of a CsCu2I3 emitter can be enhanced and narrowed in a top-emitting microcavity device. Consequently, the CsCu2I3-based LED device with the assistance of a top-emitting microcavity has significantly narrowed and enhanced the emission spectrum with a full width at half-maximum of 59 nm and a maximum forward brightness of 14767 cd m-2. To the best of our knowledge, this work achieves the narrowest CsCu2I3 LED spectra and demonstrates the potential of employing the microcavity effect to increase the efficiency and color purity of STE-based light-emitting devices.

7.
Small Methods ; 6(5): e2200048, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35266331

RESUMO

The traditional way to stabilize α-phase formamidinium lead triiodide (FAPbI3 ) perovskite often involves considerable additions of methylammonium (MA) and bromide into the perovskite lattice, leading to an enlarged bandgap and reduced thermal stability. This work shows a seed-assisted growth strategy to induce a bottom-up crystallization of MA-free perovskite, by introducing a small amount of α-CsPbBr3 /DMSO (5%) as seeds into the pristine FAPbI3 system. During the initial crystalization period, the typical hexagonal α-FAPbI3 crystals (containing α-CsPbBr3 seeds) are directly formed even at ambient temperature, as observed by laser scanning confocal microscopy. It indicates that these seeds can promote the formation and stabilization of α-FAPbI3 below the thermodynamic phase-transition temperature. After annealing not beyond 100 °C, CsPbBr3 seeds homogeneously diffused into the entire perovskite layer via an ions exchange process. This work demonstrates an efficiency of 22% with hysteresis-free inverted perovskite solar cells (PSCs), one of the highest performances for MA-free inverted PSCs. Despite absented passivation processes, open-circuit voltage is improved by 100 millivolts compared to the control devices with the same stoichiometry, and long-term operational stability retained 92% under continuous full sun illumination. Going MA-free and low-temperature processes are a new insight for compatibility with tandems or flexible PSCs.

8.
Adv Mater ; 33(40): e2102529, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418177

RESUMO

Metal halide perovskites are emerging scintillator materials in X-ray detection and imaging. However, the vulnerable structure of perovskites triggers unreliable performance when they are utilized in X-ray detectors under cumulative dose irradiation. Herein, a self-limited growth strategy is proposed to construct CsPbBr3 nanocrystals that are embedded in a transparent amorphous network structure, featuring X-imaging with excellent resolution (≈16.8 lp mm-1 ), and fast decay time (τ = 27 ns). Interestingly, it is found that the performance degradation of the scintillator, caused by the damage from high-dose X-ray irradiation, can be fully recovered after a facile thermal treatment process. This indicates a superior recycling behavior of the explored perovskites scintillator for practical applications. The recoverability of the as-explored scintillator is attributed to the low atom-migration rate in the amorphous network with high-viscosity (1 × 1014  cP). This result highlights the practical settlement of the promising perovskites for long-term, cost-effective scintillator devices.

9.
Adv Sci (Weinh) ; 8(15): e2003728, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34075729

RESUMO

All-inorganic perovskite quantum dots (QDs) CsPbX3 (X = Cl, Br, and I) have recently emerged as a new promising class of X-ray scintillators. However, the instability of perovskite QDs and the strong optical scattering of the thick opaque QD scintillator film imped it to realize high-quality and robust X-ray image. Herein, the europium (Eu) doped CsPbBr3 QDs are in situ grown inside transparent amorphous matrix to form glass-ceramic (GC) scintillator with glass phase serving as both matrix and encapsulation for the perovskite QD scintillators. The small amount of Eu dopant optimizes the crystallization of CsPbBr3 QDs and makes their distribution more uniform in the glass matrix, which can significantly reduce the light scattering and also enhance the photoluminescence emission of CsPbBr3 QDs. As a result, a remarkably high spatial resolution of 15.0 lp mm-1 is realized thanks to the reduced light scattering, which is so far a record resolution for perovskite scintillator based X-ray imaging, and the scintillation stability is also significantly improved compared to the bare perovskite QD scintillators. Those results provide an effective platform particularly for the emerging perovskite nanocrystal scintillators to reduce light scattering and improve radiation hardness.

10.
J Phys Chem Lett ; 12(23): 5580-5586, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34107680

RESUMO

The gas pumping method (GP) holds the potential of outperforming the antisolvent method (AS) for fabricating perovskite solar cells (PSCs) in many ways such as free of toxic solvents, improved film uniformity, and device reproducibility. Most of the highest power conversion efficiencies (PCEs) of PSCs are still achieved by AS. Successful demonstrations of inverted PSCs produced by GP as well as the corresponding mechanisms are still lacking. Herein, we fabricate highly efficient inverted PSCs by GP delivering an overall efficiency of 21.54%, on par with that of the devices by AS (21.41%), and a superior reproducibility at the optimal film thickness. Nevertheless, as the perovskite film thickness increases, the PCE of GP devices slightly dropped while the AS devices decreased significantly. We found that the AS method tends to produce horizontal grain boundaries due to the heterogeneous solvent extraction while they can be effectively suppresed by the GP method.

11.
RSC Adv ; 10(31): 18400-18406, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35517223

RESUMO

Inverted perovskite solar cells (PSCs) have recently gained increasing attention because of the long operation lifetime achieved. However, bathocuproine (BCP): a commonly used buffer layer in inverted PSCs, is experimentally confirmed by us to show fast aggregation at the temperature of 85 °C, which is the protocol temperature required by the International Electrotechnical Commission (IEC) standard. This thermal instability of the BCP interfacial layer makes long-term thermal stability of inverted PSCs questionable. Simply removing or replacing it can directly lead to an inferior PCE of a device. We solve this problem by removing the BCP layer and simultaneously increasing the thickness of C60, which obtains a high efficiency of 18% comparable with the device with BCP. This is possibly attributed to the extended migration path of carriers from C60 to metal electrode Ag, consequently reducing the carrier accumulation at the interface. In addition to the interfacial modification, the addition of ionic liquid: BMIMBF4 into perovskite can further improve a device's thermal stability by its effective suppression of perovskite decomposition. The devices with 0.4 mol% of BMIMBF4 exhibit promising thermal stability by retaining 80% of their initial PCE after thermal aging of 400 h at 85 °C.

12.
Beilstein J Nanotechnol ; 7: 263-277, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977383

RESUMO

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...