Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(Suppl 3): 293, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074242

RESUMO

BACKGROUND: Drug repositioning, meanings finding new uses for existing drugs, which can accelerate the processing of new drugs research and development. Various computational methods have been presented to predict novel drug-disease associations for drug repositioning based on similarity measures among drugs and diseases. However, there are some known associations between drugs and diseases that previous studies not utilized. METHODS: In this work, we develop a deep gated recurrent units model to predict potential drug-disease interactions using comprehensive similarity measures and Gaussian interaction profile kernel. More specifically, the similarity measure is used to exploit discriminative feature for drugs based on their chemical fingerprints. Meanwhile, the Gaussian interactions profile kernel is employed to obtain efficient feature of diseases based on known disease-disease associations. Then, a deep gated recurrent units model is developed to predict potential drug-disease interactions. RESULTS: The performance of the proposed model is evaluated on two benchmark datasets under tenfold cross-validation. And to further verify the predictive ability, case studies for predicting new potential indications of drugs were carried out. CONCLUSION: The experimental results proved the proposed model is a useful tool for predicting new indications for drugs or new treatments for diseases, and can accelerate drug repositioning and related drug research and discovery.


Assuntos
Aprendizado Profundo , Reposicionamento de Medicamentos , Algoritmos , Biologia Computacional , Simulação por Computador
2.
Comput Struct Biotechnol J ; 18: 20-26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31890140

RESUMO

The long noncoding RNAs (lncRNAs) are ubiquitous in organisms and play crucial role in a variety of biological processes and complex diseases. Emerging evidences suggest that lncRNAs interact with corresponding proteins to perform their regulatory functions. Therefore, identifying interacting lncRNA-protein pairs is the first step in understanding the function and mechanism of lncRNA. Since it is time-consuming and expensive to determine lncRNA-protein interactions by high-throughput experiments, more robust and accurate computational methods need to be developed. In this study, we developed a new sequence distributed representation learning based method for potential lncRNA-Protein Interactions Prediction, named LPI-Pred, which is inspired by the similarity between natural language and biological sequences. More specifically, lncRNA and protein sequences were divided into k-mer segmentation, which can be regard as "word" in natural language processing. Then, we trained out the RNA2vec and Pro2vec model using word2vec and human genome-wide lncRNA and protein sequences to mine distribution representation of RNA and protein. Then, the dimension of complex features is reduced by using feature selection based on Gini information impurity measure. Finally, these discriminative features are used to train a Random Forest classifier to predict lncRNA-protein interactions. Five-fold cross-validation was adopted to evaluate the performance of LPI-Pred on three benchmark datasets, including RPI369, RPI488 and RPI2241. The results demonstrate that LPI-Pred can be a useful tool to provide reliable guidance for biological research.

3.
Mol Ther Nucleic Acids ; 17: 1-9, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31173946

RESUMO

Cancer is a well-known killer of human beings, which has led to countless deaths and misery. Anticancer peptides open a promising perspective for cancer treatment, and they have various attractive advantages. Conventional wet experiments are expensive and inefficient for finding and identifying novel anticancer peptides. There is an urgent need to develop a novel computational method to predict novel anticancer peptides. In this study, we propose a deep learning long short-term memory (LSTM) neural network model, ACP-DL, to effectively predict novel anticancer peptides. More specifically, to fully exploit peptide sequence information, we developed an efficient feature representation approach by integrating binary profile feature and k-mer sparse matrix of the reduced amino acid alphabet. Then we implemented a deep LSTM model to automatically learn how to identify anticancer peptides and non-anticancer peptides. To our knowledge, this is the first time that the deep LSTM model has been applied to predict anticancer peptides. It was demonstrated by cross-validation experiments that the proposed ACP-DL remarkably outperformed other comparison methods with high accuracy and satisfied specificity on benchmark datasets. In addition, we also contributed two new anticancer peptides benchmark datasets, ACP740 and ACP240, in this work. The source code and datasets are available at https://github.com/haichengyi/ACP-DL.

4.
Cells ; 8(2)2019 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717470

RESUMO

Many life activities and key functions in organisms are maintained by different types of protein⁻protein interactions (PPIs). In order to accelerate the discovery of PPIs for different species, many computational methods have been developed. Unfortunately, even though computational methods are constantly evolving, efficient methods for predicting PPIs from protein sequence information have not been found for many years due to limiting factors including both methodology and technology. Inspired by the similarity of biological sequences and languages, developing a biological language processing technology may provide a brand new theoretical perspective and feasible method for the study of biological sequences. In this paper, a pure biological language processing model is proposed for predicting protein⁻protein interactions only using a protein sequence. The model was constructed based on a feature representation method for biological sequences called bio-to-vector (Bio2Vec) and a convolution neural network (CNN). The Bio2Vec obtains protein sequence features by using a "bio-word" segmentation system and a word representation model used for learning the distributed representation for each "bio-word". The Bio2Vec supplies a frame that allows researchers to consider the context information and implicit semantic information of a bio sequence. A remarkable improvement in PPIs prediction performance has been observed by using the proposed model compared with state-of-the-art methods. The presentation of this approach marks the start of "bio language processing technology," which could cause a technological revolution and could be applied to improve the quality of predictions in other problems.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Mapeamento de Interação de Proteínas , Algoritmos , Bases de Dados de Proteínas , Humanos , Redes Neurais de Computação , Curva ROC , Saccharomyces cerevisiae/metabolismo
5.
BMC Syst Biol ; 12(Suppl 8): 129, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577794

RESUMO

BACKGROUND: Self-interacting Proteins (SIPs) plays a critical role in a series of life function in most living cells. Researches on SIPs are important part of molecular biology. Although numerous SIPs data be provided, traditional experimental methods are labor-intensive, time-consuming and costly and can only yield limited results in real-world needs. Hence,it's urgent to develop an efficient computational SIPs prediction method to fill the gap. Deep learning technologies have proven to produce subversive performance improvements in many areas, but the effectiveness of deep learning methods for SIPs prediction has not been verified. RESULTS: We developed a deep learning model for predicting SIPs by constructing a Stacked Long Short-Term Memory (SLSTM) neural network that contains "dropout". We extracted features from protein sequences using a novel feature extraction scheme that combined Zernike Moments (ZMs) with Position Specific Weight Matrix (PSWM). The capability of the proposed approach was assessed on S.erevisiae and Human SIPs datasets. The result indicates that the approach based on deep learning can effectively resist data skew and achieve good accuracies of 95.69 and 97.88%, respectively. To demonstrate the progressiveness of deep learning, we compared the results of the SLSTM-based method and the celebrated Support Vector Machine (SVM) method and several other well-known methods on the same datasets. CONCLUSION: The results show that our method is overall superior to any of the other existing state-of-the-art techniques. As far as we know, this study first applies deep learning method to predict SIPs, and practical experimental results reveal its potential in SIPs identification.


Assuntos
Biologia Computacional/métodos , Redes Neurais de Computação , Mapeamento de Interação de Proteínas , Humanos , Saccharomyces cerevisiae/metabolismo
6.
Mol Ther Nucleic Acids ; 11: 337-344, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858068

RESUMO

The interactions between non-coding RNAs (ncRNAs) and proteins play an important role in many biological processes, and their biological functions are primarily achieved by binding with a variety of proteins. High-throughput biological techniques are used to identify protein molecules bound with specific ncRNA, but they are usually expensive and time consuming. Deep learning provides a powerful solution to computationally predict RNA-protein interactions. In this work, we propose the RPI-SAN model by using the deep-learning stacked auto-encoder network to mine the hidden high-level features from RNA and protein sequences and feed them into a random forest (RF) model to predict ncRNA binding proteins. Stacked assembling is further used to improve the accuracy of the proposed method. Four benchmark datasets, including RPI2241, RPI488, RPI1807, and NPInter v2.0, were employed for the unbiased evaluation of five established prediction tools: RPI-Pred, IPMiner, RPISeq-RF, lncPro, and RPI-SAN. The experimental results show that our RPI-SAN model achieves much better performance than other methods, with accuracies of 90.77%, 89.7%, 96.1%, and 99.33%, respectively. It is anticipated that RPI-SAN can be used as an effective computational tool for future biomedical researches and can accurately predict the potential ncRNA-protein interacted pairs, which provides reliable guidance for biological research.

7.
Mol Biosyst ; 13(7): 1336-1344, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28604872

RESUMO

Protein-protein interactions (PPIs) play an important role in most of the biological processes. How to correctly and efficiently detect protein interaction is a problem that is worth studying. Although high-throughput technologies provide the possibility to detect large-scale PPIs, these cannot be used to detect whole PPIs, and unreliable data may be generated. To solve this problem, in this study, a novel computational method was proposed to effectively predict the PPIs using the information of a protein sequence. The present method adopts Zernike moments to extract the protein sequence feature from a position specific scoring matrix (PSSM). Then, these extracted features were reconstructed using the stacked autoencoder. Finally, a novel probabilistic classification vector machine (PCVM) classifier was employed to predict the protein-protein interactions. When performed on the PPIs datasets of Yeast and H. pylori, the proposed method could achieve average accuracies of 96.60% and 91.19%, respectively. The promising result shows that the proposed method has a better ability to detect PPIs than other detection methods. The proposed method was also applied to predict PPIs on other species, and promising results were obtained. To evaluate the ability of our method, we compared it with the-state-of-the-art support vector machine (SVM) classifier for the Yeast dataset. The results obtained via multiple experiments prove that our method is powerful, efficient, feasible, and make a great contribution to proteomics research.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes Neurais de Computação , Mapeamento de Interação de Proteínas/métodos , Ligação Proteica , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...