Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 889: 164208, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207773

RESUMO

This research investigated the spatial distribution of heavy metals, including mercury (Hg), cadmium (Cd), copper (Cu), arsenic (As), nickel (Ni), lead (Pb), chromium (Cr), and zinc (Zn), in surface sediments from a coastal area near to an industrial harbor (Tangshan Harbor, China) using 161 sediment samples. According to the geo-accumulation index (Igeo), 11 samples were classified as unpolluted (Igeo≤0). Notably, 41.0 % of the research samples were moderately or strongly polluted (2 < Igeo≤3) with Hg and 60.2 % of the samples were moderately polluted (1 < Igeo≤2) in Cd. The ecological effect evaluation showed that the metals Zn, Cd, and Pb were at the effect range low level, and 51.6 % of the samples for Cu, 60.9 % for Cr, 90.7 % for As, 41.0 % for Hg, and 64.0 % for Ni fell in the range between the effect range-low and the effect range-mean levels, respectively. The correlation analysis showed that the distribution patterns of Cr, Cu, Zn, Ni, and Pb were similar to each other, high in the northwest, southeast, and southwest regions of the study area and low in the northeast region, which corresponded well with sediment size components. Based on principal component analysis (PCA) and positive matrix factorization (PMF), four distinct sources of pollution were quantitatively attributed, including agricultural activities (22.08 %), fossil fuel consumption (24.14 %), steel production (29.78 %), and natural sources (24.00 %). Hg (80.29 %), Cd (82.31 %) and As (65.33 %) in the region's coastal sediments were predominantly contributed by fossil fuel, steel production and agricultural sources, respectively. Cr (40.00 %), Cu (43.63 %), Ni (47.54 %), and Zn (38.98 %) were primarily of natural lithogenic origin, while Pb mainly came from the mixed sources of agricultural activities (36.63 %), fossil fuel (36.86 %), and steel production (34.35 %). Multiple factors played important roles in the selective transportation of sedimentary heavy metals, particularly sediment properties, and hydrodynamic sorting processes in the study area.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Chumbo/análise , Medição de Risco , Monitoramento Ambiental , Metais Pesados/análise , Arsênio/análise , Mercúrio/análise , Cromo/análise , Zinco/análise , Níquel/análise , China , Aço/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise
2.
Front Plant Sci ; 14: 1072181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818832

RESUMO

Recent evidence shows that small RNAs are transferred from a species to another through cross-species transmission and exhibit biological activities in the receptor. In this study, we focused on tomato-derived sRNAs play a role of defense against Botrytis cinerea. Bioinformatics method was firstly employed to identify tomato-encoded sRNAs as the cross-species antifungal factors targeting B. cinerea genes. Then the expression levels of some identifed sRNAs were checked in B. cinerea-infected plant using qRT-PCR method. Exogenic RNA-induced gene silences analysis were performed to investigate the antifungal roles of the sRNAs, and the target genes in B. cinerea of antifungal sRNAs would be confirmed by using co-expression analysis. Results showed that a total of 21 B.cinerea-induced sRNAs with high abundance were identified as the cross-kingdom regulator candidates. Among them, three sRNAs containing a miRNA (miR396a-5p) and two siRNA (siR3 and siR14) were selected for experimental validation and bioassay analysis. qRT-PCR confirmed that all of these 3 sRNAs were induced in tomato leaves by B. cinerea infection. Correspondingly, 4 virulence genes of B. cinerea respectively targeted by these 3 sRNAs were down-regulated. Bioassay revealed that all of these 3 cross-species sRNAs could inhibit the virulence and spore gemination of B. cinerea. Correspondingly, the coding genes of B. cinerea targeted by these sRNAs were also down-regulated. Moreover, the virulence inhibition by double strand sRNA was more effective than that by single strand sRNA. The inhibition efficiency of sRNA against B. cinerea increased with the increase of its concentration. Our findings provide new evidence into the coevolution of pathogens and host plants, as well as new directions for the use of plant-derived sRNAs to control pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...