Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
2.
J Cancer ; 15(13): 4417-4429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947391

RESUMO

Background: Gastric cancer (GC) is one of the most common malignancies worldwide, with high incidence and mortality rate. Tripartite motif-containing 28 (TRIM28) is an important molecule that affects the occurrence and development of tumors, but its function in GC has not been elucidated clearly. The purpose of this study is to explore the molecular mechanism by which TRIM28 affect the GC. Methods: TRIM28 expression was tested in RNA-seq data from TCGA database, tumor tissue samples from patients and GC cell lines. Genes were silenced or overexpressed by siRNA, lentivirus-mediated shRNA, or plasmids. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to explore the proliferation of GC cells after TRIM28 knockdown. RNA-seq and TCGA database were used to identify target genes. Luciferase report assay was employed to detect the possible mechanism between TRIM28 and Indoleamine 2,3-dioxygenase (IDO1). Tryptophan concentration in cell supernatant was measured using a fluorometric assay kit. MGC-803 and 746T cells were injected into mice to establish xenograft animal models. Results: The expression of TRIM28 was positively correlated with tumor size and poorer prognosis. Upregulation of TRIM28 was observed in GC tissues and cells. In vitro, we proved that knockdown of TRIM28 significantly inhibited the proliferation of GC cells. Then TRIM28 was found to be positively correlated with the expression of IDO1 in GC cells. In accordance with this, tryptophan levels in cell supernatants were increased in TRIM28 knockdown GC cells and overexpression of IDO1 could reverse this phenotype. Serum response factor (SRF), a reported regulator of IDO1, was also regulated by TRIM28 in GC cells. And decreased expression of IDO1 induced by TRIM28 knockdown could be partly reversed through overexpression of serum response factor (SRF) in GC cells. Functional research demonstrated that the expression of IDO1 was increased in GC and IDO1 knockdown could also inhibited the proliferation of GC cells. Furthermore, overexpression of IDO1 could partly reverse proliferation inhibited by TRIM28 knockdown in GC cells. In vivo, knockdown of TRIM28 significantly inhibited the tumor growth and overexpression of IDO1 and SRF both could reverse proliferation inhibited by TRIM28 knockdown. Conclusions: TRIM28 is crucial in the development of GC, and may regulate IDO1 through SRF. TRIM28 promote GC cell proliferation through SRF/IDO1 axis.

3.
JCI Insight ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024553

RESUMO

To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-sequencing of high-fat diet (HFD)-fed 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: 1) HFD+CKD increased aortic cytosolic lipopolysaccharide (LPS) levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); 2) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; 3) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; 4) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; 5) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting two-tier trained immunity.

4.
Asian J Androl ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38856307

RESUMO

ABSTRACT: Male infertility is a worldwide health issue, affecting 8%-12% of the global population. Oligoasthenoteratozoospermia (OAT) represents a severe type of male infertility, characterized by reduced sperm count and motility and an increased frequency of sperm with aberrant morphology. Using whole-exome sequencing, this study identified a novel missense mutation (c.848C>A, p.A283E) in the coiled-coil domain-containing 34 gene (CCDC34) in a consanguineous Pakistani family. This rare mutation was predicted to be deleterious and to affect the protein stability. Hematoxylin and eosin staining of spermatozoa from the patient with OAT revealed multiple morphological abnormalities of the flagella and transmission electron microscopy indicated axonemal ultrastructural defects with a lack of outer dynein arms. These findings indicated that CCDC34 plays a role in maintaining the axonemal ultrastructure and the assembly or stability of the outer dynein arms, thus expanding the phenotypic spectrum of CCDC34 missense mutations.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38934276

RESUMO

AIMS: This study aims to investigate the effects and mechanism of Morinda Officinalis How (MOH), a lianoid shrub with potential therapeutic properties, on Metabolism- Associated Fatty Liver Disease (MAFLD). bjective: The objective of this study was to construct a MOH-MAFLD network prediction model and explore the effect of MOH on MAFLD and its underlying mechanism in vivo. METHODS: Screening of MAFLD targets was performed using the DisGeNET database. Venny database was used to establish the MOH-MAFLD interaction network map, while the STRING database was applied to assess the Protein-Protein Interaction (PPI) network. The central target gene was screened using Gene Ontology (GO) function analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. RESULTS: GO function enrichment analysis revealed that MOH affected MAFLD through apoptosis and estrogen-related pathways. KEGG pathway enrichment and PPI network analysis indicated that MOH might mitigate MAFLD by reducing apoptosis and improving lipid metabolism. Additionally, 6 weeks of MOH treatment in rats decreased caspase-3 levels and increased Bcl-2, Estrogen receptor α(Esr1), and JUN proteins, thus ameliorating MAFLD progression. CONCLUSION: MOH could delay the progression of MAFLD by affecting estrogen-related pathways, reducing cell stress, and inhibiting apoptosis.

8.
Curr Pharm Des ; 30(12): 935-951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898815

RESUMO

BACKGROUND: Colon cancer is a common tumor in the gastrointestinal tract with a poor prognosis. According to research reports, ubiquitin-dependent modification systems have been found to play a crucial role in the development and advancement of different types of malignant tumors, including colon cancer. However, further investigation is required to fully understand the mechanism of ubiquitination in colon cancer. METHODS: We collected the RNA expression matrix of the E3 ubiquitin ligase-related genes (E3RGs) from the patients with colon adenocarcinoma (COAD) using The Cancer Genome Atlas program (TCGA). The "limma" package was used to obtain differentially expressed E3RGs between COAD and adjacent normal tissues. Then, univariate COX regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct the prognostic signature and nomogram model. Afterward, we used the original copy number variation data of COAD to find potential somatic mutation and employed the "pRRophetic" package to investigate the disparity in the effectiveness of chemotherapy drugs between high and low-risk groups. The RT-qPCR was also implied to detect mRNA expression levels in tumor tissues. RESULTS: A total of 137 differentially expressed E3RG3 were screened and 11 genes (CORO2B, KCTD9, RNF32, BACH2, RBCK1, DPH7, WDR78, UCHL1, TRIM58, WDR72, and ZBTB18) were identified for the construction of prognostic signatures. The Kaplan-Meier curve showed a worse prognosis for patients with high risk both in the training and test cohorts (P = 1.037e-05, P = 5.704e-03), and the area under the curve (AUC) was 0.728 and 0.892 in the training and test cohorts, respectively. Based on the stratified analysis, this 11- E3RGs signature was a novel and attractive prognostic model independent of several clinicopathological parameters (age, sex, stage, TNM) in COAD. The DEGs were subjected to GO and KEGG analysis, which identified pathways associated with cancer progression. These pathways included the cAMP signaling pathway, calcium signaling pathway, Wnt signaling pathway, signaling pathways regulating stem cell pluripotency, and proteoglycans in cancer. Additionally, immune infiltration analysis revealed significant differences in the infiltration of macrophages M0, T cells follicular helper, and plasma cells between the two groups. CONCLUSION: We developed a novel independent risk model consisting of 11 E3RGs and verified the effectiveness of this model in test cohorts, providing important insights into survival prediction in COAD and several promising targets for COAD therapy.


Assuntos
Neoplasias do Colo , Ubiquitina-Proteína Ligases , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Prognóstico , Ubiquitina-Proteína Ligases/genética , Feminino , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade
9.
Fitoterapia ; 176: 106005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744383

RESUMO

Mogrol, the aglycone of well-known sweeter mogrosides, shows potent anti-inflammatory activity. In this study, forty-two mogrol derivatives bearing various pharmacophores with oxygen or nitrogen atoms were designed and synthesized via structural modification at C24 site, and their anti-inflammatory activity were screened against lipopolysaccharide (LPS)-induced RAW264.7 cells. Compared with mogrol, most of derivatives exhibited stronger inhibition of NO production without cytotoxicity. In particular, compound B5 that contained an indole motif effectively suppressed the secretion of inflammatory mediators including TNF-α and IL-6, and inhibited the expression levels of TLR4, p-p65 and iNOS proteins. Molecular docking showed that the active B5 interacted with amino acid residues of iNOS protein through π-π stacking and hydrophobic interactions with binding affinity value of -12.1 kcal/mol, which was much stronger than mogrol (-8.9 kcal/mol). These results suggest that derivative B5 is a promising anti-inflammatory molecule and the strategy of hybridizing indole skeleton on mogrol is worthy for further attention.


Assuntos
Anti-Inflamatórios , Simulação de Acoplamento Molecular , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células RAW 264.7 , Estrutura Molecular , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-6/metabolismo , Indóis/farmacologia , Indóis/química
10.
J Med Chem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771131

RESUMO

Due to the shallow and hydrophilic binding sites of carbohydrate-binding proteins, the design of glycomimetics is often complicated by high desolvation costs as well as competition with solvent. Therefore, a careful optimization of interaction vectors and ligand properties is required in the design and optimization of glycomimetics. Here, we employ thermodynamics-guided design to optimize mannose-based glycomimetics targeting the human C-type lectin receptor dendritic cell-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN), a pathogenic host factor in viral infections. By exploring ligand rigidification and hydrogen bond engineering, a monovalent glycomimetic with an unprecedented affinity for DC-SIGN in the low µM range was discovered. A matched molecular pair analysis based on microcalorimetric data revealed a stereospecific hydrogen bond interaction with Glu358/Ser360 as the origin of this cooperative and enthalpically dominated interaction. This detailed insight into the binding mechanism paves the way for an improvement of monovalent glycomimetics targeting DC-SIGN.

11.
Mol Ther ; 32(6): 1956-1969, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627967

RESUMO

Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor ß (TGF-ß) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-ß-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-ß-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.


Assuntos
Fator 4 Ativador da Transcrição , Aminoácidos , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aminoácidos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Transcriptoma , Animais
12.
Regen Ther ; 27: 279-289, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38617444

RESUMO

Introduction: Cell transplantation is an emerging and effective therapeutic approach for enhancing uterine adhesions caused by endometrial damage. Currently, human umbilical cord blood mononuclear cells (HUCBMCs) have been extensively for tissue and organ regeneration. However, their application in endometrial repair remains unexplored. Our investigation focuses on the utilization of HUCBMCs for treating endometrial injury. Methods: The HUCBMCs were isolated from health umbilical cord blood, and co-cultured with the injured endometrial stromal cells and injured endometrial organoids. The cell proliferation and apoptosis were measured by cck8 assays and flow cytometry. Western blotting was used to detect the expression of PTEN, AKT and p-AKT. Immunofluorescence assay revealed expression levels of epithelial-mesenchymal transition (EMT) -related markers such as E-cadherin, N-cadherin, and TGF-ß1. The endometrial thickness, fibrosis level, and glandular number were examined after the intravenous injection of HUCBMCs in mouse endometrial models. Immunohistochemistry was employed to assess changes in growth factors vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) as well as fibrosis markers α-SMA and COL1A1. Additionally, expressions of EMT-related proteins E-cadherin and N-cadherin were evaluated. Results: HUCBMCs significantly improved the proliferation and reduced the apoptosis of damaged endometrial stromal cells (ESCs), accompanied by up-regulation of phospho-AKT expression. HUCBMCs increased endometrial thickness and glandular count while decreasing fibrosis and EMT-related markers in mouse endometrial models. Furthermore, EMT-related markers of ESCs and endometrial organoids were significantly decreased. Conclusions: Our findings suggest that HUCBMCs plays a pivotal role in mitigating endometrial injury through the attenuation of fibrosis. HUCBMCs may exert a reverse effect on the EMT process during the endometrium reconstruction.

13.
Updates Surg ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438686

RESUMO

With the emergence of novel variants, Omicron variant caused a different clinical picture than the previous variants and little evidence was reported regarding perioperative outcomes after Omicron variants. The aim of the study was to evaluate the postoperative outcomes of gastrointestinal cancer patients following Omicron variants infection and also to determine the timing of surgery after infection recovery. A total of 124 patients who underwent gastrointestinal cancer surgery with prior SARS-CoV-2 infection between December 2022 and February 2023 were retrospectively reviewed. 174 cases underwent the same operation during December 2018 and February 2019 as control group. SARS-CoV-2-infected patients were further categorized into three groups based on infected time (1-3 weeks; 4-6 weeks; and ≥ 7 weeks). 90.3% of SARS-CoV-2-infected patients had mild symptoms. The COVID-19 vaccination rate was 71.0%, with a full vaccination rate of 48.4%. There were no significant differences in 30-day morbidity and mortality. There was also no significant difference in pulmonary complications, cardiovascular complications, and surgical complications between the three different diagnosis time groups. In conclusion, reducing waiting time for elective surgery was safe for gastrointestinal cancer patients in the context of an increased transmissibility and milder illness severity with Omicron variant.

14.
Eur J Med Chem ; 268: 116225, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367495

RESUMO

The pharmacological modulation of disease-relevant carbohydrate-protein interactions represents an underexplored area of medicinal chemistry. One particular challenge in the design of glycomimetic compounds is the inherent instability of the glycosidic bond toward enzymatic cleavage. This problem has traditionally been approached by employing S-, N-, or C-glycosides with reduced susceptibility toward glycosidases. The application of ring-extended glycomimetics is an innovative approach to circumvent this issue. On the example of the bacterial adhesin FimH, it was explored how design principles from pyranose glycomimetics transfer to analogous septanose structures. A series of ring-extended FimH antagonists exhibiting the well-proven pharmacophore necessary for targeting the tyrosine-gate of FimH was synthesized. The resulting septanoses were evaluated for their affinity to the conformationally rigid isolated lectin domain of FimH (FimHLD), as well as a structurally flexible full-length FimH (FimHFL) construct. Some elements of potent mannoside-based FimH antagonists could be successfully transferred to septanose-based ligands, ultimately resulting in a 32-fold increase in binding affinity. Interestingly, the canonical ca. 100-fold loss of binding affinity between FimHLD and FimHFL is partly mitigated by the more flexible septanose antagonists, hinting at potentially differing interaction features of the flexible glycomimetics with intermediately populated states during the conformational transition of FimHFL.


Assuntos
Lectinas , Monossacarídeos , Conformação Molecular , Ligantes , Tirosina
15.
Environ Toxicol ; 39(5): 2908-2926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299230

RESUMO

BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. METHOD: We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models. RESULT: Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. CONCLUSION: The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Prognóstico , Aprendizado de Máquina , Neoplasias Colorretais/genética
16.
Environ Toxicol ; 39(5): 2706-2716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240193

RESUMO

BACKGROUND: Previous studies have reported that inflammation, especially interleukin family members, plays an important role in the development of colorectal cancer (CRC). However, because of various confounders and the lack of clinical randomized controlled trial, the causal relationship between genetically predicted level of interleukin family and CRC risk has not been fully explained. OBJECTIVE: Bi-directional Mendelian randomization (MR) was conducted to investigate the causal association between interleukin family members and CRC. METHODS: Several genetic variables were extracted as instrumental variables (IVs) from summary data of genome-wide association studies (GWAS) for interleukin and CRC. IVs of interleukin family were obtained from recently published GWAS studies and the summary data of CRC was from FinnGen Biobank. After a series of quality control measures and strict screening, six models were used to evaluate the causal relationship. Pleiotropy, heterogeneity test, and a variety of sensitivity analysis were also used to estimate the robustness of the model results. RESULTS: Genetically predicted higher circulating levels of IL-2 (odds ratio [OR]: 0.76; 95% confidence interval [CI]: 0.63-0.92; p = .0043), IL-17F(OR: 0.78; 95% CI: 0.62-1.00; p = .015), and IL-31 (OR: 0.88; 95% CI: 0.79-0.98; p = .023) were suggestively associated with decreased CRC risk. However, higher level of IL-10 (OR: 1.40; 95% CI: 1.18-1.65; p = .000094) was causally associated with increased risk of CRC. Reverse MR results indicated that the exposure of CRC was suggestively associated with higher levels of IL-36α (OR: 1.23; 95% CI: 1.01-1.49; p = .040) and IL-17RD (OR: 1.22; 95% CI, 1.00-1.48; p = .048) and lower level of IL-13 (OR: 0.78; 95% CI: 0.65-0.95; p = .013). The overall MR results did not provide evidence for causal relationships between other interleukins and CRC (p > .05). CONCLUSION: We offer suggestive evidence supporting a potential causal relationship between circulating interleukins and CRC, underscoring the significance of targeting circulating interleukins as a strategy to mitigate the incidence of CRC.


Assuntos
Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Interleucinas/genética , Interleucina-13 , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética
17.
Int J Cancer ; 154(7): 1285-1297, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180065

RESUMO

CD25, also known as the interleukin-2 receptor α chain (IL-2Rα), is highly expressed on regulatory T cells (Tregs), but relatively lower on effector T cells (Teffs). This makes it a potential target for Treg depletion, which can be used in tumor immunotherapy. However, marketed anti-CD25 antibodies (Basiliximab and Daclizumab) were originally developed as immunosuppressive drugs to prevent graft rejection, because these antibodies can block IL-2 binding to CD25 on Teffs, which in turn destroys the function of Teffs. Recent studies have shown that non-IL-2-blocking anti-CD25 antibodies have displayed exciting antitumor effects. Here, we screened out a non-IL-2-blocking anti-CD25 monoclonal antibody (mAb) 7B7 by hybridoma technology, and confirmed its antitumor activity via depleting Tregs in a CD25 humanized mouse model. Subsequently, we verified that the humanized 7B7, named as h7B7-15S, has comparable activities to 7B7, and that its Treg depletion is further increased when combined with anti-CTLA-4, leading to enhanced remodeling of the tumor immune microenvironment. Moreover, our findings reveal that the Fab form of h7B7-15S has the ability to deplete Tregs, independent of the Fc region. Taken together, our studies expand the application of anti-CD25 in tumor immunotherapy and provide insight into the underlying mechanism.


Assuntos
Anticorpos Monoclonais , Neoplasias , Camundongos , Animais , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imunossupressores , Linfócitos T Reguladores , Microambiente Tumoral
18.
Arch Pharm (Weinheim) ; 357(4): e2300396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086006

RESUMO

Many viruses exploit the human C-type lectin receptor dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) for cell entry and virus dissemination. An inhibition of DC-SIGN-mediated virus attachment by glycan-derived ligands has, thus, emerged as a promising strategy toward broad-spectrum antiviral therapeutics. In this contribution, several cognate fragments of oligomannose- and complex-type glycans grafted onto a poly-l-lysine scaffold are evaluated as polyvalent DC-SIGN ligands. The range of selected carbohydrate epitopes encompasses linear (α- d-Man-(1→2)-α- d-Man, α- d-Man-(1→2)-α- d-Man-(1→2)-α- d-Man-(1→3)-α- d-Man) and branched (α- d-Man-(1→6)-[α- d-Man-(1→3)]-α- d-Man) oligomannosides, as well as α- l-Fuc. The thermodynamics of binding are investigated on a mono- and multivalent level to shed light on the molecular details of the interactions with the tetravalent receptor. Cellular models of virus attachment and DC-SIGN-mediated virus dissemination reveal a high potency of the presented glycopolymers in the low pico- and nanomolar ranges, respectively. The high activity of oligomannose epitopes in combination with the biocompatible properties of the poly- l-lysine scaffold highlights the potential for further preclinical development of polyvalent DC-SIGN ligands.


Assuntos
COVID-19 , Moléculas de Adesão Celular , Receptores de Superfície Celular , SARS-CoV-2 , Humanos , Molécula 3 de Adesão Intercelular , Polímeros , Relação Estrutura-Atividade , Lectinas Tipo C/metabolismo , Ligantes , Polissacarídeos/farmacologia , Epitopos
19.
J Assist Reprod Genet ; 41(1): 109-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831349

RESUMO

PURPOSE: Asthenozoospermia is an important cause of male infertility, and the most serious type is characterized by multiple morphological abnormalities of the sperm flagella (MMAF). However, the precise etiology of MMAF remains unknown. In the current study, we recruited a consanguineous Pakistani family with two infertile brothers suffering from primary infertility due to MMAF without obvious signs of PCD. METHODS: We performed whole-exome sequencing on DNAs of the patients, their parents, and a fertile brother and identified the homozygous missense variant (c.1490C > G (p.P497R) in NPHP4 as the candidate mutation for male infertility in this family. RESULTS: Sanger sequencing confirmed that this mutation recessively co-segregated with the MMAF in this family. In silico analysis revealed that the mutation site is conserved across different species, and the identified mutation also causes abnormalities in the structure and hydrophobic interactions of the NPHP4 protein. Different bioinformatics tools predict that NPHP4p.P497R mutation is pathogenic. Furthermore, Papanicolaou staining and scanning electron microscopy of sperm revealed that affected individuals displayed typical MMAF phenotype with a high percentage of coiled, bent, short, absent, and/or irregular flagella. Transmission electron microscopy images of the patient's spermatozoa revealed significant anomalies in the sperm flagella with the absence of a central pair of microtubules (9 + 0) in every section scored. CONCLUSIONS: Taken together, these results show that the homozygous missense mutation in NPHP4 is associated with MMAF.


Assuntos
Infertilidade Masculina , Irmãos , Humanos , Masculino , Flagelos/genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Mutação , Mutação de Sentido Incorreto/genética , Proteínas/genética , Sêmen , Cauda do Espermatozoide/patologia , Espermatozoides/patologia
20.
BMC Cancer ; 23(1): 1262, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129809

RESUMO

BACKGROUND: Gastric cancer is a clinically common tumor, showing an upward trend of both incidence and mortality. GRB7 has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of GRB7 in gastric cancer process. METHODS: immunohistochemical (IHC) staining using a tissue microarray (TMA), quantitative reverse transcription PCR (qRT-PCR) and Western blotting were performed to detect the expression of genes. Furthermore, gastric cancer cell lines AGS and MGC-803 were transfected with short hairpin RNAs against GRB7. The biological function of GRB7 in gastric cancer cells were examined by CCK-8, flow cytometry, wound healing and Transwell assays. Then, in vivo tumor formation assay was conducted to explore the effects of GRB7 on tumor growth. Finally, expression levels of proteins related to cell functions were determined by Western blotting. Coimmunoprecipitation (CoIP) assay was performed to assess the protein-protein interaction. RESULTS: GRB7 was up-regulated in gastric cancer tissues and cell lines, and its expression was inversely proportional to survival of gastric cancer patients. Moreover, GRB7 knockdown inhibited proliferative, migratory abilities, as well as promoted cell apoptosis in gastric cancer cells. Further study suggested that GRB7 silencing could suppress gastric cancer tumor growth in vivo. Furthermore, our study uncovered an important interaction between GRB7 and MyD88. Silencing MyD88 was observed to alleviate the malignant phenotypes promoted by GRB7 in gastric cancer cells. CONCLUSIONS: Together, this study provided evidence that GRB7 may be an effective molecular targets for the treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Neoplasias Gástricas/patologia , Fator 88 de Diferenciação Mieloide/genética , Proliferação de Células/genética , RNA Interferente Pequeno , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína Adaptadora GRB7/genética , Proteína Adaptadora GRB7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...