Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Org Lett ; 26(23): 4945-4952, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38832831

RESUMO

Described herein is an efficient copper-catalyzed tandem alkyne indolylcupration-initiated 1,2-indole migration/6π-electrocyclic reaction of allene-ynamides with indoles by the in situ-generated metal carbenes. This method allows the efficient synthesis of valuable indole-fused spirobenzo[f]indole-cyclohexanes with high regio- and stereoselectivity. In addition, this reaction affords rapid access to the functionalized spirobenzo[f]indole-cyclohexanes in the absence of indoles by a presumable 5-exo-dig cyclization/Friedel-Crafts alkylation via copper-containing all-carbon 1,4-dipoles.

2.
Small ; : e2311197, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593375

RESUMO

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

3.
Org Lett ; 26(18): 3715-3721, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38678545

RESUMO

A highly convenient copper(I)-catalyzed oxidation-initiated cyclopropanation of indolyl ynamide for the rapid construction of indole-fused cyclopropane-lactams is described, which represents, to the best of our knowledge, the first non-noble-metal-catalyzed indolyl ynamide oxidation/dearomatization by the in situ generated α-oxo copper carbenes. Compared to hydrazone and diazo, the use of alkynes as carbene precursors allows cyclopropanation to occur under a safe and convenient pathway. Moreover, this transformation can lead to the divergent synthesis of pentacyclic spiroindolines involving the reversal of ynamide regioselectivity by engineering substrate structures.

4.
ChemSusChem ; : e202400076, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429246

RESUMO

Rechargeable aqueous zinc metal batteries (AZMBs) are considered as a potential alternative to lithium-ion batteries due to their low cost, high safety, and environmental friendliness. However, the Zn anodes in AZMBs face severe challenges, such as dendrite growth, metal corrosion, and hydrogen evolution, all of which are closely related to the Zn/electrolyte interface. This article offers a short review on surface passivation to alleviate the issues on the Zn anodes. The composition and structure of the surface layers significantly influence their functions and then the performance of the Zn anodes. The recent progresses are introduced, according to the chemical components of the passivation layers on the Zn anodes. Moreover, the challenges and prospects of surface passivation in stabilizing Zn anodes are discussed, providing valuable guidance for the development of AZMBs.

5.
Small ; 20(27): e2311511, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38319022

RESUMO

The reductive transformation of carbon dioxide (CO2) into high-valued N­formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2N(CH3)2]2{[Ni3(µ3-O)(XN)(BDC)3]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3] cluster interaction with CO2 via η2-C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.

6.
Chembiochem ; 25(2): e202300631, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37930640

RESUMO

Nanomedicine has significantly advanced precise tumor therapy, providing essential technical blessing for active drug accumulation, targeted consignment, and mitigation of noxious side effects. To enhance anti-tumor efficacy, the integration of multiple therapeutic modalities has garnered significant attention. Here, we designed an innovative CoFeSe2 @DMSA@FA nanocatalyst with Se vacancies (abbreviated as CFSDF), which exhibits synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT), leading to amplified tumor oxidative stress and enhanced photothermal effects. The multifunctional CFSDF nanocatalyst exhibits the remarkable ability to catalyze the Fenton reaction within the acidic tumor microenvironment, efficiently converting hydrogen peroxide (H2 O2 ) into highly harmful hydroxyl radicals (⋅OH). Moreover, the nanocatalyst effectively diminishes GSH levels and ameliorates intracellular oxidative stress. The incorporation of FA modification enables CFSDF to evade immune detection and selectively target tumor tissues. Numerous in vitro and in vivo investigations have consistently demonstrated that CFSDF optimizes its individual advantages and significantly enhances therapeutic efficiency through synergistic effects of multiple therapeutic modalities, offering a valuable and effective approach to cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Catálise , Peróxido de Hidrogênio , Estresse Oxidativo , Succímero , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Commun Chem ; 6(1): 104, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258704

RESUMO

Polycyclic N-heterocycles are important structural motifs commonly found in bioactive compounds, however, their selective construction via the cyclization of allenynes remains challenging yet highly desirable. Here we show a homogeneous copper-catalyzed hetero Diels-Alder (HDA) reaction of allenynes with cis-diazenes (PTAD, 4-phenyl-1,2,4-triazoline-3,5-dione), allowing the practical and efficient synthesis of a diverse array of valuable polycyclic N-heterocycles. A temperature-controlled and stereocontrolled chemoselectivity of the reaction was observed, leading to the chemodivergent synthesis of tetracyclic pyrrolidines, pentacyclic triazepanes and tricyclic pyrrolidines. Compared with related Au-catalyzed cyclization of allenynes, this copper catalysis achieves cyclization of allenynes terminating in C-N bond formation via the HDA reaction.

8.
Opt Express ; 31(6): 9196-9210, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157494

RESUMO

The reference-frame-independent quantum key distribution (RFI-QKD) has the advantage of tolerating reference frames that slowly vary. It can generate secure keys between two remote users with slowly drifted and unknown reference frames. However, the drift of reference frames may inevitably compromise the performance of QKD systems. In the paper, we employ the advantage distillation technology (ADT) to the RFI-QKD and the RFI measurement-device-independent QKD (RFI MDI-QKD), and we then analyze the effect of ADT on the performance of decoy-state RFI-QKD and RFI MDI-QKD in both asymptotic and nonasymptotic cases. The simulation results show that ADT can significantly improve the maximum transmission distance and the maximum tolerable background error rate. Furthermore, the performance of RFI-QKD and RFI MDI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are taken into account. Our work combines the merits of the ADT and RFI-QKD protocols, which further enhances the robustness and practicability of QKD systems.

9.
Ecotoxicol Environ Saf ; 259: 115029, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216867

RESUMO

Nitrogen (N) deposition has increased dramatically in recent decades, which is significantly affecting the invasion and growth of exotic plants. Whether N deposition leads to invasive alien species becoming competitively superior to native species remains to be investigated. In the present study, an invasive species (Oenothera biennis L.) and three co-occurring native species (Artemisia argyi Lévl. et Vant., Inula japonica Thunb., and Chenopodium album L.) were grown in a monoculture (two seedlings of the same species) or mixed culture (one seedling of O. biennis and one seedling of a native species) under three levels of N deposition (0, 6, and 12 g∙m-2∙year-1). Nitrogen deposition had no effect on soil N and P content. Nitrogen deposition enhanced the crown area, total biomass, leaf chlorophyll content, and leaf N to phosphorus ratio in both invasive and native plants. Oenothera biennis dominated competition with C. album and I. japonica due to its high resource acquisition and absorption capacity (greater height, canopy, leaf chlorophyll a to chlorophyll b ratio, leaf chlorophyll content, leaf N content, leaf mass fraction, and lower root-to-shoot ratio). However, the native species A. argyi exhibited competitive ability similar to O. biennis. Thus, invasive species are not always superior competitors of native species; this depends on the identities of the native species. High N deposition enhanced the competitive dominance of O. biennis over I. japonica by 15.45% but did not alter the competitive dominance of O. biennis over C. album. Furthermore, N deposition did not affect the dominance of O. biennis or A. argyi. Therefore, the species composition of the native community must be considered when preparing to resist future biological invasions. Our study contributes to a better understanding of the invasion mechanisms of alien species under N-loading conditions.


Assuntos
Nitrogênio , Plantas , Clorofila A , Plântula , Clorofila , Espécies Introduzidas , Solo
10.
Commun Chem ; 6(1): 35, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36807326

RESUMO

General access to highly valuable seven-membered rings via Büchner-type reaction remains a formidable challenge. Here we report a Cu-catalyzed intermolecular oxidation of alkynes using N-oxides as oxidants, which enables expedient preparation of valuable benzo[6,7]azepino[2,3-b]quinolines and pyridine-based diones. Importantly, in contrast to the well-established gold-catalyzed intermolecular alkyne oxidation, the dissociated pyridine or quinoline partner could be further utilized to construct N-heterocycles in this system and the reaction most likely proceeds by a Büchner-type ring expansion pathway. A mechanistic rationale for this cascade cyclization is supported by DFT calculations.

11.
Molecules ; 29(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202710

RESUMO

The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.


Assuntos
Microbioma Gastrointestinal , Cirrose Hepática , Humanos , Cirrose Hepática/tratamento farmacológico , Desenvolvimento de Medicamentos , Polifenóis/farmacologia , Polifenóis/uso terapêutico
12.
Angew Chem Int Ed Engl ; 61(49): e202214243, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36220784

RESUMO

Expensive gold-based catalysts are frequently used for electrochemical CO2 reduction into CO. A feasible approach to obtain low-cost Au-based catalysts is needed. Herein, a novel framework 1 assembled from [Zr48 Ni6 ] nano-cages is prepared. It exhibits a high BET surface area of 1569 m2 g-1 and high solvents/pH stability. 1 can not only selectively extract AuCl4 - from artificial electronic waste, but can then be transformed into low-cost catalyst Au nanoparticle@1-x (Au NPs@1-x, x=1, 2, 3, 4) with tuneable Au NPs sizes. The CO2 RR investigations revealed that the Au NPs@1-3 displayed an excellent FECO of 95.2 % with a current density of 102.9 mA cm-2 at -1.1 V, and such high catalytic activity can be maintained for at least 15 h without obvious decrease because the confinement effect of [Zr48 Ni6 ] nano-cages prevents Au NPs agglomeration. This work offers a facile strategy to obtain low-cost and high-performance Au-based catalysts for various reactions activated by Au.

13.
Org Biomol Chem ; 20(25): 5035-5044, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35661854

RESUMO

In recent years, gold-catalyzed cycloadditions of allenes, especially those involving a gold carbene intermediate, have received significant interest, as they avoid the utilization of potentially hazardous and inaccessible diazo compounds as starting materials for carbene generation. Cycloaddition reactions consisting of the uncomplicated addition of two or more unsaturated functional groups are one of the most efficient synthetic methodologies for the rapid assembly of carbo- and heterocyclic structures from simple acyclic precursors. In this review, we introduce an overview of the advances in the gold-catalyzed cycloaddition of allenes via a metal carbene intermediate and categorize these reactions according to the reaction types of the cycloadditions.

14.
Neural Regen Res ; 17(11): 2518-2525, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35535905

RESUMO

Administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is believed to be an effective method for treating neurodevelopmental disorders. In this study, we investigated the possibility of hUC-MSCs treatment of neonatal hypoxic/ischemic brain injury associated with maternal immune activation and the underlying mechanism. We established neonatal rat models of hypoxic/ischemic brain injury by exposing pregnant rats to lipopolysaccharide on day 16 or 17 of pregnancy. Rat offspring were intranasally administered hUC-MSCs on postnatal day 14. We found that polypyrimidine tract-binding protein-1 (PTBP-1) participated in the regulation of lipopolysaccharide-induced maternal immune activation, which led to neonatal hypoxic/ischemic brain injury. Intranasal delivery of hUC-MSCs inhibited PTBP-1 expression, alleviated neonatal brain injury-related inflammation, and regulated the number and function of glial fibrillary acidic protein-positive astrocytes, thereby promoting plastic regeneration of neurons and improving brain function. These findings suggest that hUC-MSCs can effectively promote the repair of neonatal hypoxic/ischemic brain injury related to maternal immune activation through inhibition of PTBP-1 expression and astrocyte activation.

15.
Biochem Genet ; 60(6): 2434-2454, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35460386

RESUMO

We aimed to explore the underlying mechanism behind the cisplatin (DDP) resistance of non-small cell lung cancer (NSCLC) cells to identify novel potential therapeutic targets to overcome chemoresistance. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were applied to analyze RNA and protein expression, respectively. Cell Counting Kit-8 (CCK8) assay was conducted to analyze the DDP resistance of NSCLC cells. Colony formation assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay were performed to analyze cell proliferation ability. Flow cytometry was applied to assess cell apoptosis. Cell migration and invasion were assessed by transwell assays. Cell glycolytic metabolism was analyzed using commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to test the intermolecular target relations. Circular RNA_0030998 (circ_0030998) was down-regulated in DDP-resistant NSCLC tissues and cell lines. Circ_0030998 overexpression restrained the DDP resistance, proliferation, migration, invasion and glycolytic metabolism and triggered the apoptosis of NSCLC cells. Circ_0030998 overexpression contributed to the anti-tumor effect of DDP in the growth of xenograft tumor in vivo. MicroRNA-1323 (miR-1323) was a molecular target of circ_0030998 in NSCLC cells. Circ_0030998 overexpression-mediated effects on the DDP resistance and malignant properties of NSCLC cells were largely based on its negative regulation of miR-1323. MiR-1323 interacted with programmed cell death 4 (PDCD4). Circ_0030998 positively regulated PDCD4 expression partly through sponging miR-1323. MiR-1323 silencing restrained DDP resistance and progression of NSCLC partly through up-regulating PDCD4. Circ_0030998 suppressed DDP resistance and NSCLC progression depending on the regulation of miR-1323/PDCD4 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/uso terapêutico
16.
ChemSusChem ; 15(8): e202102475, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35243804

RESUMO

Li-ion batteries with LiFePO4 cathode and Li4 Ti5 O12 anode show promise for storing renewable energy. However, their low output voltage results in a low energy density. In contrast, dual-ion batteries with graphite cathode and Li4 Ti5 O12 anode can achieve a high output voltage of >3.0 V. In this study, mesocarbon microbeads (MCMB)@LiFePO4 ||Li4 Ti5 O12 dual-ion batteries are developed to address these issues. In the cathode, MCMB improves the conductivity of LiFePO4 and increases the output voltage by the intercalation of anions in the cell voltage range of 2.1-3.5 V. Moreover, the LiFePO4 shell sustains the structural integrity of MCMB and generates in situ a cathode-electrolyte interphase (CEI) with rich LiF. Owing to these unique compositional and structural features, MCMB@LiFePO4 ||Li4 Ti5 O12 manifests much better electrochemical performance than LiFePO4 ||Li4 Ti5 O12 and MCMB||Li4 Ti5 O12 . It sustains 89.6 % of the initial capacity after 1200 cycles at 0.2 A g-1 and achieves a specific energy up to 128 Wh kg-1 at 179 W kg-1 .

17.
Angew Chem Int Ed Engl ; 61(18): e202200123, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35199447

RESUMO

Regulating Lewis acid-base sites in catalysts to investigate their influence in the chemical fixation of CO2 is significant but challenging. A metal-organic framework (MOF) with open metal Co sites, {(NH2 Me2 )[Co3 (µ3 -OH)(BTB)2 (H2 O)]⋅9 H2 O⋅5 DMF}n (1), was obtained and the results of the catalytic investigation show that 1 can catalyze cycloaddition of CO2 and aziridines to give 99 % yield. The efficiency of the cyclization of CO2 with propargyl amines is only 32 %. To improve the catalytic ability of 1, ligand XN with Lewis base sites was introduced into 1 and coordinated with the open Co sites, resulting in a decrease of the Lewis acid sites and an increase in the Lewis base sites in a related MOF 2 ({(NH2 Me2 )[Co3 (µ3 -OH)(NHMe2 )(BTB)2 (XN)]⋅8 H2 O⋅4 DMF}n ). Selective regulation of the type of active centers causes the yield of oxazolidinones to be enhanced by about 2.4 times, suggesting that this strategy can turn on/off the catalytic activity for different reactions. The catalytic results from 2 treated with acid solution support this conclusion. This work illuminates a MOF-construction strategy that produces efficient catalysts for CO2 conversion.

18.
Cell Death Discov ; 8(1): 17, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013115

RESUMO

Radioresistance prevails as one of the largest obstacles in the clinical treatment of nasopharyngeal carcinoma (NPC). Meanwhile, tumor-derived extracellular vesicles (TEVs) possess the ability to manipulate radioresistance in NPC. However, its mechanism remains to be further explored. Therefore, the current study set out to explore the mechanism of microRNA (miR)-142-5p delivered by TEVs in regard to the radiosensitivity of NPC. Firstly, peripheral blood samples were collected from patients with radioresistance and radiosensitivity, followed by RT-qPCR detection of miR-142-5p expression. A dual-luciferase reporter assay was carried out to elucidate the targeting relationship of miR-142-5p with HGF and EGF. In addition, radiotherapy-resistant NPC cell models were established by screening NPC cells with gradient increasing radiation exposure, and co-incubated with EVs isolated from miR-142-5p mimic-transfected NPC cells, followed by overexpression of HGF and EGF. Moreover, cell viability was detected by means of MTS, cell proliferation with a colony formation assay, cell apoptosis with flow cytometry, and expression patterns of related genes with the help of Western blot analysis. NPC xenotransplantation models in nude mice were also established by subcutaneous injection of 5-8FR cells to determine apoptosis, tumorigenicity, and radiosensitivity in nude mice. It was found that miR-142-5p was poorly expressed in peripheral blood from NPC patients with radioresistance. Mechanistic experimentation illustrated that miR-142-5p inversely targeted HGF and EGF to inactivate the HGF/c-Met and EGF/EGFR pathways, respectively. NPC cell apoptosis was observed to be augmented, while their radioresistance and proliferation were restricted by EVs-miR-142-5p or HGF silencing, or EGF silencing. Furthermore, EVs-miR-142-5p inhibited growth and radioresistance and accelerated the apoptosis of radiotherapy-resistant NPC cells in nude mice by inhibiting the HGF/c-Met and EGF/EGFR pathways. Collectively, our findings indicated that TEVs might inhibit the HGF/c-Met and EGF/EGFR pathways by delivering miR-142-5p into radiotherapy-resistant NPC cells to enhance radiosensitivity in NPC.

19.
Entropy (Basel) ; 24(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420359

RESUMO

Sending-or-not sending twin-field quantum key distribution (SNS TF-QKD) has the advantage of tolerating large amounts of misalignment errors, and its key rate can exceed the linear bound of repeaterless quantum key distribution. However, the weak randomness in a practical QKD system may lower the secret key rate and limit its achievable communication distance, thus compromising its performance. In this paper, we analyze the effects of the weak randomness on the SNS TF-QKD. The numerical simulation shows that SNS TF-QKD can still have an excellent performance under the weak random condition: the secret key rate can exceed the PLOB boundary and achieve long transmission distances. Furthermore, our simulation results also show that SNS TF-QKD is more robust to the weak randomness loopholes than the BB84 protocol and the measurement-device-independent QKD (MDI-QKD). Our results emphasize that keeping the randomness of the states is significant to the protection of state preparation devices.

20.
Angew Chem Int Ed Engl ; 60(43): 23394-23402, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406687

RESUMO

Electrocatalytic reduction of CO2 by metal-organic frameworks (MOFs) has been widely investigated, but insufficient conductivity limits application. Herein, a porous 3D In-MOF {(Me2 NH2 )[In(BCP)]⋅2 DMF}n (V11) with good stability was constructed with two types of channels (1.6 and 1.2 nm diameter). V11 exhibits moderate catalytic activity in CO2 electroreduction with 76.0 % of Faradaic efficiency for formate (FEHCOO- ). Methylene blue molecules of suitable size and pyrolysis temperature were introduced and transformed into carbon particles (CPs) after calcination. The performance of the obtained CPs@V11 is significantly improved both in FEHCOO- (from 76.0 % to 90.1 %) and current density (2.2 times). Control experiments show that introduced CPs serve as accelerant to promote the charges and mass transfer in framework, and benefit to sufficiently expose active sites. This strategy can also work on other In-MOFs, demonstrating the universality of this method for electroreduction of CO2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...