Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Neurosci ; 18: 1432659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391755

RESUMO

In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.

2.
J Proteomics ; 307: 105278, 2024 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142625

RESUMO

Depression is a prominent contributor to global disability. A growing body of data suggests that depression is associated with the pathophysiology of the medial prefrontal cortex (mPFC), but the underlying mechanisms remain poorly understood. Mice were subjected to chronic restraint stress (CRS) for 3 weeks to create depression models during this investigation. Protein tandem mass tag (TMT) quantification and LC-MS/MS analysis were conducted to examine proteome patterns. Afterwards, to further explore the enrichment of differential proteins and the signaling pathways involved, we annotated these differentially expressed proteins. We confirmed that CRS mice developed depression-like and anxiety-like behaviors. Among the 8081 measured proteins, a total of 15 proteins were found to be differentially expressed. These proteins exhibited functional enrichment in a variety of biological functions, and among these pathways, alterations in synaptic function and autophagy are noteworthy. In addition, we identified a differentially expressed protein called Wnt2b and found that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/ß-catenin pathway. Our findings showed depression-like behaviors in the CRS mouse model and molecular alterations in the mPFC, which may help explain the pathogenesis of depression and identify novel antidepressant medication targets. SIGNIFICANCE: Depression is a prevalent and frequent chronic mental illness and is now a significant contributor to global disability. In this study, we used chronic restraint stress to establish a mouse model of depression, and differentially expressed proteins in the medial prefrontal cortex of depressed model mice were detected by TMT proteomics. Our study verified the presence of altered synaptic function and excessive autophagy in the mPFC of CRS-induced mice from a proteomic perspective. Furthermore, we demonstrated that CRS may disrupt synaptic plasticity by affecting the activation of the Wnt2b/ß-catenin pathway, which may be a key link in the pathogenesis of depression and may provide new insights for identifying new antidepressant drug targets.


Assuntos
Depressão , Córtex Pré-Frontal , Proteômica , Restrição Física , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Proteômica/métodos , Depressão/metabolismo , Masculino , Modelos Animais de Doenças , Proteoma/metabolismo , Camundongos Endogâmicos C57BL
3.
Int Immunopharmacol ; 139: 112660, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39018688

RESUMO

Cardiac tissue remodeling is characterized by altered heart tissue architecture and dysfunction, leading to heart failure. Sustained activation of the renin-angiotensin-aldosterone system (RAAS) greatly promotes the development of myocardial remodeling. Angiotensin II (Ang II), which is the major component of RAAS, can directly lead to cardiac remodeling by inducing an inflammatory response. Schisandrin B (Sch B), the active component extracted from the fruit of Schisandra chinensis (Turcz.) Baill has been shown to exhibit anti-inflammatory activity through its ability to target TLR4 and its adaptor protein, MyD88. In this study, we explored whether Sch B alleviates Ang II-induced myocardial inflammation and remodeling via targeting MyD88. Sch B significantly suppressed Ang II-induced inflammation as well as increased the expression of several genes of tissue remodeling (ß-Mhc, Tgfb, Anp, α-Ska) both in vivo and in vitro. These protective effects of Sch B were due to the inhibition of recruitment of MyD88 to TLR2 and TLR4, suppressing the Ang II-induced NF-κB activation and reducing the following inflammatory responses. Moreover, the knockdown of Myd88 in cardiomyocytes abrogated the Ang II-induced increases in the production of inflammatory cytokines and expression of remodeling genes. These findings provide new evidence that the mechanism of Sch B protection was attributed to selective inhibition of MyD88 signaling. This finding could pave the way for novel therapeutic strategies for myocardial inflammatory diseases.


Assuntos
Angiotensina II , Ciclo-Octanos , Lignanas , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide , Miócitos Cardíacos , Compostos Policíclicos , Receptor 4 Toll-Like , Animais , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico , Angiotensina II/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Camundongos , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Remodelação Ventricular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , NF-kappa B/metabolismo
4.
Transl Oncol ; 44: 101954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608405

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy with limited treatment options and a dismal prognosis. The tumor immune microenvironment (TIME) is crucial for iCCA progression, yet its comprehensive characterization remains incomplete. This study utilized mass cytometry by time of flight (CyTOF) to comprehensively analyze immune cell populations in fresh iCCA tumor samples and adjacent peritumor liver tissues. Notably, NK cell percentages significantly decreased in iCCA lesions compared to peritumor liver tissues. Conversely, an enrichment of immunosuppressive CD39+Foxp3+CD4+ regulatory T cells (CD39+T-regs) and exhausted-like CD8+T cells (with pronounced CD39 and PD-1 expression) within TIME was identified and confirmed by multiplex immunofluorescence staining in an independent patient cohort (n = 140). Crucially, tumor-infiltrating CD39+T-regs and CD39+PD-1+CD8+T cells emerged as independent prognostic indicators associated with an unfavorable prognosis in iCCA. These findings unveil the intricate immune landscape within iCCA, offering valuable insights for disease management and novel cancer immunotherapies.

5.
Anal Chim Acta ; 1299: 342434, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499420

RESUMO

BACKGROUND: Cancer as a leading cause of premature death worldwide has become a major threat to human health due to the high incidence and mortality. Monitoring tumor markers are reliable and significantly important for early detection of cancers. In complex biological systems, it is of great urgency but still remains challenging to conceive a fluorescent probe with multiple tumor markers detection property. Hydrogen sulfide (H2S) and pH are two target biomarkers for diagnosis of early cancer. The preparation of a novel probe with H2S and pH dual detection functions is highly anticipated. RESULTS: Herein, a novel sequential detection probe HTPQ-HS for H2S and pH has been developed. In this system, HPQ (2-(2 -hydroxyphenyl)-4(3H)-quinazolinone) structure combined with triphenylamine is applied as the fluorophore, and 2, 4-dinitrophenylsulfonyl group is used as the recognition group. In the presence of H2S, HTPQ-HS is transformed into product HTPQ-OH which shows fluorescence enhancement (29-fold) at 525 nm in less than 4 min and further displays repeatable acid-base responsive ability. HTPQ-HS is able to sequentially response to H2S and pH in living cells and does not react directly with pH. Owing to the low cytotoxicity, HTPQ-HS is able to detect exogenous and endogenous H2S in colon cancer cells and mice, monitor H2S in inflammation model and in foodstuffs. As the environment changes from acidic to alkaline, the fluorescence intensity ratio (I470/I530) of product HTPQ-OH changes remarkably, illustrating the ratiometric fluorescent responsiveness to pH. SIGNIFICANCE AND NOVELTY: A multifunctional fluorescent probe HTPQ-HS for sequential detection of H2S and pH is synthesized. Probe HTPQ-OH realizes the monitoring of dynamic changes in intracellular pH and displays prospective application in security printing. We expect that our work could offer an important guidance on the development of multifunctional fluorescent probes for visualizing H2S and pH in biology and environment.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/química , Células HeLa , Concentração de Íons de Hidrogênio , Biomarcadores Tumorais
6.
Int Immunopharmacol ; 129: 111609, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364742

RESUMO

Obesity is recognized as a major risk factor for chronic kidney disease (CKD), which is accompanied by increased renal lipid build-up, fibrosis, inflammation, apoptosis and pyroptosis. Bicyclol (BIC), a Chinese marketed hepatoprotective drug, has shown excellent anti-inflammatory, anti-fibrosis, anti-apoptotic, and lipid regulation effects in different animal models. In this study, we explored the role and mechanism of BIC in high-fat diet (HFD)-induced obesity-related nephropathy. Mice were fed with HFD for 24 weeks to develop obesity-related nephropathy, while mice in the BIC administration group were treated with BIC (50 mg/kg or 100 mg/kg, once every two days) at the last 12 weeks. We found that BIC treatment relieved the impairment of kidney structure and renal dysfunction caused by HFD. In addition, we found that BIC mitigated HFD-induced renal fibrosis, inflammation, apoptosis and pyroptosis by inhibiting JNK and NF-κB pathways. SV40-MES-13 cells treated with palmitate (PA) were used as the in vitro model. Our data show that BIC pre-administration relieved cellular damage caused by PA through suppressing JNK and NF-κB signaling pathways. In conclusion, we demonstrated that BIC attenuated obesity-induced renal injury by inhibiting chronic inflammation, fibrosis, apoptosis and pyroptosis via targeting JNK and NF-κB pathways. Our data suggested that BIC could be potentially used to prevent obesity-associated nephropathy, which warrants future investigation.


Assuntos
Compostos de Bifenilo , NF-kappa B , Insuficiência Renal Crônica , Animais , Camundongos , NF-kappa B/metabolismo , Rim/patologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Inflamação/metabolismo , Insuficiência Renal Crônica/patologia , Fibrose , Lipídeos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
7.
Drug Dev Res ; 85(1): e22150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349256

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a progressive disease that can further evolve towards liver fibrosis and hepatocellular carcinoma in the end stage. Costunolide (Cos) is a natural sesquiterpene lactone that exhibits both anti-inflammatory and antioxidant properties. However, the therapeutic effect of Cos on NAFLD is not clear. In this study, we explored the potential protective effect and mechanism of Cos on NAFLD. C57BL/6 mice were fed with high-fat diet (HFD) to induce NAFLD. Cos was administered by gavage to observe the effect of Cos on NAFLD. We demonstrated that oral administration of Cos reduced HFD-induced hepatic fibrosis and the release of inflammatory cytokines, limiting the generation of reactive oxygen species. In vitro experiments revealed that pretreatment with Cos significantly decreased PA-induced production of inflammatory cytokines and fibrosis in AML-12 cells. Mechanism study showed that the effect of Cos was correlated to the induction of Nrf-2 and inhibition of NF-κB pathways. Collectively, these findings indicated that Cos exerts hepatoprotective effect against NAFLD through blocking inflammation and oxidative stress. Our study suggested that Cos might be an effective pharmacotherapy for the treatment of NAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Sesquiterpenos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Inflamação/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Citocinas , Cirrose Hepática
8.
Acta Pharmacol Sin ; 45(5): 988-1001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279043

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.


Assuntos
Dieta Hiperlipídica , Macrófagos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Fator de Necrose Tumoral alfa , Animais , Dieta Hiperlipídica/efeitos adversos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout , Fígado/patologia , Fígado/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
9.
Anal Methods ; 16(5): 686-694, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205809

RESUMO

Cysteine (Cys) and homocysteine (Hcy) are important biothiols in living organisms. They play important roles in a variety of physiological and pathological processes. Therefore, it is very important to design an optical probe for the selective detection of Cys/Hcy. Herein, we report the design and synthesis of a fluorescent probe NBD-B-T based on a boron-dipyrromethene (BODIPY) structure, which showed an excellent lysosome targeting ability and an outstanding Cys/Hcy detection capacity. For NBD-B-T, the sensing group 7-nitro-2,1,3-benzoxadiazole (NBD) and the lysosomal targeting group morpholine were introduced. The results show that the NBD-B-T probe can detect Cys/Hcy with fluorescence emission turn-on performance. The low detection limits of this probe are about 76.0 nM for Hcy and 97.6 nM for Cys, respectively. The NBD-B-T probe has a low detection limit, high stability, and excellent selectivity and sensitivity. More importantly, the NBD-B-T can target lysosome, and simultaneously detect the Cys/Hcy in living cells.


Assuntos
Compostos de Boro , Cisteína , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HeLa , Lisossomos
10.
Microb Biotechnol ; 17(1): e14403, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226944

RESUMO

Erectile Dysfunction (ED) is considered a physical and mental illness. A variety of potential associations between gut microbiota and health or disease have been found. By comparing the gut microbiota of healthy controls and ED patients, our study investigated the relationship between ED and gut microbiota. The results revealed that the ED group exhibited a significantly higher relative abundance of Bacteroides, Fusobacterium, Lachnoclostridium, Escherichia-Shigella and Megamonas, while showing a significantly lower relative abundance of Bifidobacterium compared to the control group. The dysbiosis of gut microbiota played a role in the onset and progression of ED by influencing the gut barrier, cardiovascular system and mental health, which provided a novel perspective on understanding the pathophysiology of ED. What is more, we had identified several key gut microbiota. By combining 16S rRNA sequencing with machine learning techniques, we were able to uncover the significant value and impact of gut microbiota in the early detection of ED.


Assuntos
Disfunção Erétil , Microbioma Gastrointestinal , Masculino , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Bifidobacterium
11.
Adv Sci (Weinh) ; 11(7): e2306298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064101

RESUMO

Pancreatic cancer (PCa) is one of the most fatal human malignancies. The enhanced infiltration of stromal tissue into the PCa tumor microenvironment limits the identification of key tumor-specific transcription factors and epigenomic abnormalities in malignant epithelial cells. Integrated transcriptome and epigenetic multiomics analyses of the paired PCa organoids indicate that the basic helix-loop-helix transcription factor 40 (BHLHE40) is significantly upregulated in tumor samples. Increased chromatin accessibility at the promoter region and enhanced mTOR pathway activity contribute to the elevated expression of BHLHE40. Integrated analysis of chromatin immunoprecipitation-seq, RNA-seq, and high-throughput chromosome conformation capture data, together with chromosome conformation capture assays, indicate that BHLHE40 not only regulates sterol regulatory element-binding factor 1 (SREBF1) transcription as a classic transcription factor but also links the enhancer and promoter regions of SREBF1. It is found that the BHLHE40-SREBF1-stearoyl-CoA desaturase axis protects PCa cells from ferroptosis, resulting in the reduced accumulation of lipid peroxidation. Moreover, fatostatin, an SREBF1 inhibitor, significantly suppresses the growth of PCa tumors with high expressions of BHLHE40. This study highlights the important roles of BHLHE40-mediated lipid peroxidation in inducing ferroptosis in PCa cells and provides a novel mechanism underlying SREBF1 overexpression in PCa.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Proteínas de Homeodomínio/genética , Ferroptose/genética , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
12.
ACS Appl Bio Mater ; 6(12): 5349-5359, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37957165

RESUMO

Ionic substitution can effectively activate the surface of hydroxyapatite (HA) for bone repair and regeneration processes. Therefore in this study, magnesium (Mg)-, zinc (Zn)-, and Mg/Zn-codoped HA was prepared by a hydrothermal method. The results of experimental and first-principles calculations verify the existence of Mg and Zn ions in the HA structure by altering cell parameters, crystallinity, and particle size. The results also showed that Mg and Zn are actively accommodated at the Ca(1) and Ca(2) positions, which not only inhibit HA formation but also promote calcium-deficient HA, and when the codoping content increased to 10%Mg and 10%Zn, the HA transformed completely to the whitlockite phase. Furthermore, the impact of codoping on biocompatibility was examined by employing MC3T3 cells. The in vitro study revealed that 5%Mg and 5%Zn single and -codoped HA promoted the proliferation of MC3T3 cells and 5%Mg-doped and -codoped HA stimulated MC3T3 cell differentiation, while 5%Zn-doped and -codoped HA revealed worthy antibacterial properties. Overall, the obtained results demonstrate that cosubstituted HA (5%Mg and 5%Zn) is promising, which not only eradicates bacteria (Escherichia coli and Staphylococcus aureus) but also induces bone regeneration. These findings suggest that 5%Mg and 5%Zn binary-substituted HA is a very promising biomaterial for hard tissue scaffolds and bone repair.


Assuntos
Durapatita , Zinco , Durapatita/farmacologia , Durapatita/química , Zinco/farmacologia , Zinco/química , Magnésio/farmacologia , Magnésio/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química
13.
J Transl Med ; 21(1): 838, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990271

RESUMO

BACKGROUND: LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS: Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS: LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION: LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Gencitabina , Proliferação de Células , Glicólise , Fenótipo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
14.
Biomed Pharmacother ; 167: 115652, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801903

RESUMO

Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/metabolismo , Depressão , Mitocôndrias/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
15.
Hematology ; 28(1): 2260975, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37732620

RESUMO

Follicular dendritic cell sarcoma (FDCS) is a rare low-intermediate grade malignant neoplasm. To date, published data on FDCS clinical courses are sparse, and no conditional survival study has been performed. Thus, we retrospectively analyzed 187 patients diagnosed with FDCS from the Surveillance, Epidemiology, and End Results (SEER) database. In this study, the median age at diagnosis was 50 years and 91 (48.7%) patients were male. The most common primary location was the abdomen/pelvis (82, 43.9%). The 1-year, 3-year, and 5-year overall survival (OS) were 88.7%, 69.0%, and 59.8%, respectively. The 5-year conditional overall survival increased from 65.7% at baseline to 83.8% in 5-year survivors. The 3-year FDCS-specific death rate was 26.7% and the rate of death from other reasons was 3.7%. In addition, the annual death hazard was the highest in the first four years after diagnosis and increased again in the 7th and 8th years. Age > 60 years at diagnosis, metastatic disease, and FDCS in thoracic organs were associated with shorter OS and FDCS-specific survival. In addition, FDCS patients, with either local or metastatic disease, could benefit from surgery therapy. In addition, adjuvant radiotherapy or chemotherapy for local disease provided no significant improvement in overall survival or FDCS-specific survival. We hope these findings may guide treatments and surveillance strategies for FDCS patients in clinical practice.


Assuntos
Sarcoma de Células Dendríticas Foliculares , Segunda Neoplasia Primária , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Sarcoma de Células Dendríticas Foliculares/epidemiologia , Sarcoma de Células Dendríticas Foliculares/terapia , Estudos Retrospectivos , Análise de Sobrevida , Bases de Dados Factuais
16.
Front Psychiatry ; 14: 1111712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547216

RESUMO

Objective: Alcohol use disorder (AUD) is the second most prevalent mental disorder and might be related to depression. Major vault protein (MVP) is a cytoplasmic protein related to vesicle transport. The present study aimed to investigate the interaction between a genetic variant (MVP rs4788186) and depression in adult male Han Chinese with AUD during withdrawal. Methods: All participants (N = 435) were diagnosed with AUD. Alcohol dependence level was measured using the Michigan Alcoholism Screening Test, and depression was measured using the self-rating depression scale. Genomic DNA was extracted from peripheral blood and genotyped. Results: Hierarchical regression analysis identified an interaction between MVP rs4788186 and alcohol dependence level for depression (ß = -0.17, p < 0.05). Then, a region of significance test was performed to interpret the interaction effect. Re-parameterized regression models revealed that the interaction between MVP rs4788186 and alcohol problem severity fit the strong differential susceptibility model (R2 = 0.08, p < 0.001), suggesting that the AA homozygotes would be more likely subjects with the G allele to experience major depression symptoms. Conclusion: Carriers of the AA homozygote of MVP rs4788186 may be more susceptible to severe alcohol problems and higher levels of depression during withdrawal.

17.
Phytomedicine ; 119: 154987, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531901

RESUMO

BACKGROUND: Hyperglycemic induced cardiac hypertrophy and cardiac inflammation are important pathological processes in diabetic cardiomyopathy. ß-elemene (Ele) is a natural compound extracted from Curcuma Rhizoma and has anti-tumor effects. It also has therapeutic effects in some inflammatory diseases. However, the therapeutic effect of Ele on diabetic cardiomyopathy is not clear. The purpose of this study was to evaluate the effect of Ele on hyperglycemia-caused cardiac remodeling and heart failure. METHODS: C57BL/6 mice were intraperitoneally injected with streptozotocin to induce DCM, and Ele was administered intragastric after 8 weeks to investigate the effect of Ele. RNA sequencing of cardiac tissue was performed to investigate the mechanism. RESULTS: Ele markedly inhibited cardiac inflammation, fibrosis and hypertrophy in diabetic mice, as well as in high glucose-induced cardiomyocytes. RNA sequencing showed that cardioprotective effect of Ele involved the JAK/STAT3-NF-κB signaling pathway. Ele alleviated heart and cardiomyocyte inflammation in mice by blocking diabetes-induced JAK2 and STAT3 phosphorylation and NF-κB activation. CONCLUSIONS: The study found that Ele preserved the hearts of diabetic mice by inhibiting JAK/STAT3 and NF-κB mediated inflammatory responses, suggesting that Ele is an effective therapy for DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Hiperglicemia , Camundongos , Animais , NF-kappa B/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Hiperglicemia/metabolismo , Miócitos Cardíacos , Inflamação/metabolismo
18.
J Thromb Thrombolysis ; 56(3): 414-422, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37462901

RESUMO

Cancer patients with venous thromboembolism (VTE) are prone to poor prognoses. Thus, we aimed to develop a nomogram to predict the risk of VTE in these patients. We retrospectively analyzed 791 patients diagnosed with solid tumors between January 2017 and May 2021 at Tongji Hospital. Univariate logistic analysis and multivariate logistic regression were adopted in this study. Our results indicated that age ≥ 60 years, tumor stages III-IV, platelet distribution width (PDW) ≤ 12.6%, albumin concentration ≤ 38.8 g/L, lactate dehydrogenase (LDH) concentration ≥ 198 U/L, D-dimer concentration ≥ 1.72 µg/mL, blood hemoglobin concentration ≤ 100 g/dL or the use of erythropoiesis-stimulating agents and cancer types were independent risk factors. The nomogram prediction model was developed based on the regression coefficients of these variables. We assessed the performance of the nomogram by calibration plot and the area under the receiver operating characteristic curve and compared it with the Khorana score. The concordance index (C- index) of the nomogram was 0.852 [95% confidence interval (CI) 0.823 to 0.880], while the Khorana score was 0.681 (95% CI 0.639 to 0.723). Given its performance, this nomogram could be used to select cancer patients at high risk for VTE and guide thromboprophylaxis treatment in clinical practice, provided it is validated in an external cohort.


Assuntos
Neoplasias , Tromboembolia Venosa , Humanos , Pessoa de Meia-Idade , Nomogramas , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/etiologia , Estudos Retrospectivos , Anticoagulantes , Medição de Risco , Neoplasias/complicações , Neoplasias/patologia , Fatores de Risco
19.
Nat Commun ; 14(1): 4600, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524695

RESUMO

Neuropathy is a feature more frequently observed in pancreatic ductal adenocarcinoma (PDAC) than other tumors. Schwann cells, the most prevalent cell type in peripheral nerves, migrate toward tumor cells and associate with poor prognosis in PDAC. To unveil the effects of Schwann cells on the neuro-stroma niche, here we perform single-cell RNA-sequencing and microarray-based spatial transcriptome analysis of PDAC tissues. Results suggest that Schwann cells may drive tumor cells and cancer-associated fibroblasts (CAFs) to more malignant subtypes: basal-like and inflammatory CAFs (iCAFs), respectively. Moreover, in vitro and in vivo assays demonstrate that Schwann cells enhance the proliferation and migration of PDAC cells via Midkine signaling and promote the switch of CAFs to iCAFs via interleukin-1α. Culture of tumor cells and CAFs with Schwann cells conditioned medium accelerates PDAC progression. Thus, we reveal that Schwann cells induce malignant subtypes of tumor cells and CAFs in the PDAC milieu.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Células de Schwann/metabolismo , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Neoplasias Pancreáticas
20.
Theranostics ; 13(10): 3290-3309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351165

RESUMO

Rationale: Accumulating evidence illustrated that the reprogramming of the super-enhancers (SEs) landscape could promote the acquisition of metastatic features in pancreatic cancer (PC). Given the anatomy-based TNM staging is limited by the heterogeneous clinical outcomes in treatment, it is of great clinical significance to tailor individual stratification and to develop alternative therapeutic strategies for metastatic PC patients based on SEs. Methods: In our study, ChIP-Seq analysis for H3K27ac was performed in primary pancreatic tumors (PTs) and hepatic metastases (HMs). Bootstrapping and univariate Cox analysis were implemented to screen prognostic HM-acquired, SE-associated genes (HM-SE genes). Then, based on 1705 PC patients from 14 multicenter cohorts, 188 machine-learning (ML) algorithm integrations were utilized to develop a comprehensive super-enhancer-related metastatic (SEMet) classifier. Results: We established a novel SEMet classifier based on 38 prognostic HM-SE genes. Compared to other clinical traits and 33 published signatures, the SEMet classifier possessed robust and powerful performance in predicting prognosis. In addition, patients in the SEMetlow subgroup owned dismal survival rates, more frequent genomic alterations, and more activated cancer immunity cycle as well as better benefits in immunotherapy. Remarkably, there existed a tight correlation between the SEMetlow subgroup and metastatic phenotypes of PC. Among 18 SEMet genes, we demonstrated that E2F7 may promote PC metastasis through the upregulation of TGM2 and DKK1. Finally, after in silico screening of potential compounds targeted SEMet classifier, results revealed that flumethasone could enhance the sensitivity of metastatic PC to routine gemcitabine chemotherapy. Conclusion: Overall, our study provided new insights into personalized treatment approaches in the clinical management of metastatic PC patients.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Gencitabina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos de Coortes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA