Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004825

RESUMO

High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.

2.
IEEE Trans Electron Devices ; 70(3): 1236-1242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36972181

RESUMO

In this work, a novel sensing structure based on Au nanoparticles/HfO2/fully depleted silicon-on-insulator (AuNPs/HfO2/FDSOI) MOSFET is fabricated. Using such a planar double gate MOSFET, the electrostatic enrichment (ESE) process is proposed for the ultrasensitive and rapid detection of the coronavirus disease 2019 (COVID-19) ORF1ab gene. The back-gate (BG) bias can induce the required electric field that enables the ESE process in the testing liquid analyte with indirect contact with the top-Si layer. It is revealed that the ESE process can rapidly and effectively accumulate ORF1ab genes close to the HfO2 surface, which can significantly change the MOSFET threshold voltage ([Formula: see text]). The proposed MOSFET successfully demonstrates the detection of zeptomole (zM) COVID-19 ORF1ab gene with an ultralow detection limit down to 67 zM (~0.04 copy/[Formula: see text]) for a test time of less than 15 min even in a high ionic-strength solution. Besides, the quantitative dependence of [Formula: see text] variation on COVID-19 ORF1ab gene concentration from 200 zM to 100 femtomole is also revealed, which is further confirmed by TCAD simulation.

3.
Soft Matter ; 18(40): 7782-7793, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36178243

RESUMO

The combination of hydrophilic particles and surfactants provides a simple method to stabilize Pickering emulsions. The type and concentration of the particles and surfactants play important roles in the microstructure and rheological properties of the resulting emulsions. Herein, stable n-octane-in-water Pickering emulsions with tunable rheological properties were prepared using thread-like mesoporous silica nanoparticles (TMSNPs) and cetyltrimethylammonium bromide (CTAB) as emulsifiers. The CTAB concentration (CCTAB) highly affected the properties of emulsions, which were divided into three regions according to the results of large-amplitude oscillatory shear responses. In the low CCTAB range (0.03 mmol L-1 ≤ CCTAB ≤ 0.1 mmol L-1), the emulsions gelled with a high storage modulus . With CCTAB increasing, the value of emulsions, measured by the small-amplitude oscillatory shear, decreased from approximately 1000 Pa at 0.03 mmol L-1 to 100 Pa at 0.3 mmol L-1 and then to 40 Pa at 3 mmol L-1. A three-dimensional percolation structure formed by cross-linking of TMSNPs in the emulsion continuous phase was observed via cryo-SEM in the low CCTAB range but not in the intermediate and high CCTAB ranges. The mechanisms showing the synergistic stability and rheological properties of these emulsions were investigated. It is attributed to the unique morphology of TMSNPs and the competitive adsorption of CTAB molecules at the oil-water interface and on the nanoparticle surface in different CCTAB ranges. Moreover, owing to the porosity and hydrogen-bonding interactions between the TMSNPs and the confinement effect of the flocculated oil droplets, the viscoelasticity of the emulsions could be mediated by adding a trace amount of acid/base. This study provides a new strategy to regulate the rheological properties of emulsions. It also expands the Pickering emulsion systems with tunable rheological properties.

4.
ACS Omega ; 7(33): 29153-29160, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033667

RESUMO

The morphology of nanoparticles plays a significant role in the properties and applications of Pickering emulsions. Oil-in-water (O/W) Pickering emulsions were prepared using spherical, rod-like, and thread-like mesoporous silica nanoparticles (MSNPs) in combination with the cationic surfactant dodecyltrimethylammonium bromide (DTAB) as a stabilizer. The effects of nanoparticle morphology on the stability and stimuli-responsive properties of Pickering emulsions were investigated. For spherical and rod-like MSNP systems, stable Pickering emulsions were obtained at DTAB concentrations above 0.2 mmol·L-1. Stable Pickering emulsions containing thread-like MSNPs were produced at lower DTAB concentrations of approximately 0.1 mmol·L-1. The droplets with thread-like MSNPs were extremely large with an average diameter around 700 µm at DTAB concentrations of 0.1-0.3 mmol·L-1, which were approximately 20 times larger than those of conventional droplets. Scanning electron microscopy (SEM) images showed that all three types of MSNPs were located at the O/W interfaces. Irrespective of the morphology of the MSNPs, all the stable Pickering emulsions retained their original appearance for more than 6 months. By adding NaOH and HCl alternatively, the Pickering emulsions containing spherical and rod-like MSNPs could be switched between unstable and stable states more than 60 times. The Pickering emulsions containing thread-like MSNPs, by contrast, could have their droplet size switched between large and small more than 10 times without any obvious phase separation. The high anisotropy of thread-like MSNPs contributed to the low interface curvature of the droplets. This study revealed the relationship between the morphology of MSNPs and the characteristics of Pickering emulsions. These results enrich our knowledge about the formulation of Pickering emulsions and expand their applications.

5.
Micromachines (Basel) ; 12(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34683259

RESUMO

This paper focuses on the flow and thermal characteristics of the lubricant film in the micro clearance of a hydrodynamic journal bearing (HJB) at high rotating speed. A thermohydrodynamic (THD) method consists of the Reynolds equation coupled with energy and viscosity-temperature equation with considering the cavitation is put forward. The 3D surface diagrams of the lubricant film thickness, pressure, temperature, liquid mass fraction, flow rate and heat dissipation distributions under different geometric, operating, slip and no-slip boundary conditions are systemically exhibited and analyzed. The results show that with the rise of eccentricity or length diameter ratio, the maximum peaks of pressure, temperature and heat dissipation are rapidly increased, the cavitation is aggravated, and the flow rate is accelerated in different extent. As the bearing speed accelerating, the maximum peak of temperature is strongly increased, whereas, the distinction between peaks of flow rate and heat dissipation is magnified and reduced, respectively. It provides a fruitful inside view of the inner flow and thermal characterizations of HJB for further understanding its flow-thermal interaction mechanisms and offers theoretical support for improving its working performance.

6.
Langmuir ; 37(19): 5846-5853, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33945685

RESUMO

Novel oil-in-water (O/W) Pickering emulsions (PEs) were prepared using mesoporous nanosilica in combination with a pH-insensitive cationic surfactant as a stabilizer and show an interesting sensitivity to acids and bases. Adding a suitable amount of NaOH (nNaOH/ncationic surfactant ≥ 1) led to prompt demulsification within 10 s. Upon further adding HCl solutions (nHCl/nNaOH = 1), stable PEs re-formed after homogenization. These emulsions remained stable for over 30 days after 60 cycles, switching from stable to unstable and back to stable states, and showed a high salt tolerance. A mechanism for the switching of the Pickering emulsion (PE) to unstable and back to stable states was derived and involved anionic and neutral forms of hydroxyl groups at the mesopores of the mesoporous silica nanoparticles (MSNPs). This work reveals a switchable PE system involving a pH-insensitive surfactant, in which the species of oils and cationic surfactants can be arbitrarily selected, a feature that greatly expands the applicability of PEs.

7.
R Soc Open Sci ; 6(8): 190528, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598245

RESUMO

To study the mining-induced failure depth of floor rocks in a fully mechanized mining caving field affected by different coal seam pitches, mining face lengths, burial depths and aquifer water pressures, multifactor-coupled orthogonal numerical tests on the failure depth of floor rocks were conducted. The numerical results show that the failure depth of floor rocks increases with increasing mining face length, coal seam pitch and burial depth. According to the relationship between failure depth and these impact factors, a multifactor-coupled prediction model for the failure depth of floor rocks was established. In addition, the in situ measurement of the failure depth of floor rocks in the Yitang Coal Mine in Huoxi coal field in Shanxi Province, China, was performed, and the in situ failure depths of floor rocks in the 100 502 (80 m) and 100 502 (180 m) mining faces were approximately 12.50-14.65 m and 17.50-19.20 m, in good agreement with the results of the multifactor prediction model. Furthermore, the sensitivity of each impact factor in the prediction model of the floor failure depth was further analysed by F-test and range analysis, and the impact order of studied factors on the floor failure depth is coal seam pitch > mining face length > burial depth > aquifer water pressure.

8.
Int J Ophthalmol ; 11(12): 1902-1908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588420

RESUMO

AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye. METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18min. An independently designed novel ocular contact-type temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) of each of the central retinal artery (CRA), long posterior ciliary artery (LPCA), and ophthalmic artery (OA), as well as the mean velocity (Vm) of the central retinal vein (CRV), were measured using a color Doppler flow imaging (CDFI) technique and expressed as mean values with standard deviation (mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the Vm of the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future.

9.
ACS Appl Mater Interfaces ; 9(13): 12130-12137, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28290661

RESUMO

Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 105.

10.
ACS Appl Mater Interfaces ; 7(11): 6325-30, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25748212

RESUMO

Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.

11.
ACS Appl Mater Interfaces ; 6(20): 18312-8, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25243461

RESUMO

Ferroelectric polymers are a kind of promising materials for low-cost flexible memories. However, the relatively high thermal annealing temperature restricts the selection of some flexible polymer substrates. Here we report an alternative method to obtain ferroelectric poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films under low process temperatures. Spin-coated P(VDF-TrFE) thin films were solvent vapor processed at 30 °C for varied times. Structural analyses indicated that solvent vapor annealing induced crystallization to form a ferroelectric ß phase, and electrical measurements from both macroscopic ferroelectric switching and microscopic vertical piezoresponse force microscopy further proved the films enduring solvent vapor annealing for suitable short times possessed good ferroelectric and piezoelectric properties. To illuminate the application of solvent vapor annealing on ferroelectric devices, we further fabricated ferroelectric capacitor memory devices with a structure of Al/P(VDF-TrFE)/Al2O3/p-Si/Al where the ferroelectric layer was solvent vapor annealed. Ferroelectric capacitors showed obvious bistable operation and comparable ON/OFF ratio and retention performance. Our work makes it possible to structure ferroelectric devices on flexible substrates that require low process temperatures.

12.
Mol Med Rep ; 8(4): 1135-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912097

RESUMO

The aim of the present study was to investigate the effects of microembolic signals (MES) on post­stroke neurological deficits, stroke recurrence and survival in patients with acute cerebral infarction (CI). Patients with acute CI were enrolled consecutively and classified etiologically into the following 4 subtypes using the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification: i) Cardioembolism (CE); ii) large­artery atherosclerosis (LA); iii) small­vessel disease (SVD); and iv) stroke of other etiology, including other and undetermined etiologies. The MES of cerebral arteries were monitored by transcranial doppler (TCD), carotid atherosclerotic lesions were detected by color Doppler sonography and extracranial and intracranial magnetic resonance angiography were performed. Next, the severity of neurological deficits was evaluated using National Institutes of Health Stroke Scale (NIHSS) scores. Cases of stroke recurrence and post­stroke mortality were recorded. A total of 135 patients were recruited, including 33 with CE, 49 with LA, 24 with SVD and 29 with stroke of other etiology. A significant difference in the incidence of MES was identified between the 4 subtypes (P=0.025). The occurrence of positive MES was found to markedly correlate with a history of coronary heart disease (P<0.001) and antithrombotic treatment (P=0.045) and increased levels low density lipoprotein (P=0.036). Compared with patients with negative MES, no significant changes in NIHSS scores were found in patients with positive MES on days 1 and 7 following admission. The incidence of recurrent stoke and post­stroke mortality was elevated 3 months from the onset of CI. In conclusion, a significant difference in the occurrence of MES was identified between subtypes of patients with acute CI. The incidence of recurrent stroke and mortality was increased among patients with positive MES 3 months from onset.


Assuntos
Infarto Cerebral/diagnóstico por imagem , Embolia Intracraniana/diagnóstico por imagem , Idoso , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/mortalidade , Estenose da Valva Aórtica/fisiopatologia , Artérias Carótidas/ultraestrutura , Infarto Cerebral/mortalidade , Infarto Cerebral/fisiopatologia , Feminino , Humanos , Embolia Intracraniana/mortalidade , Embolia Intracraniana/fisiopatologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Fatores de Risco , Índice de Gravidade de Doença , Ultrassonografia Doppler Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...