Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(20): 14538-14546, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38715520

RESUMO

Metal-doped nitrogen clusters serve as effective models for elucidating the geometries and electronic properties of nitrogen-rich compounds at the molecular scale. Herein, we have conducted a systematic study of VIB-group metal chromium (Cr) doped nitrogen clusters through a combination of mass spectrometry techniques and density functional theory (DFT) calculations. The laser ablation is employed to generate CrNn+ clusters. The results reveal that CrN8+ cluster exhibits the highest signal intensity in mass spectrometry. The photodissociation experiments with 266 nm photons confirm that the chromium heteroazide clusters are composed of chromium ions and N2 molecules. Further structural searches and electronic structure calculations indicate that the cationic CrN8+ cluster possesses an X shaped geometry with D2 symmetry and exhibits robust stability. Molecular orbital and chemical bonding analyses demonstrate the existence of strong interactions between Cr+ cation and N2 ligands. The present findings enrich the geometries of metal doped nitrogen clusters and provide valuable guidance for the rational design and synthesis of novel transition metal nitrides.

2.
Opt Express ; 30(12): 21698-21709, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224883

RESUMO

Based on a single-beam injection distributed feedback semiconductor laser (DFB-SL) combining with optical heterodyne, a photonic scheme for generating dual-linear chirp microwave (dual-LCM) signal with identical or complementary chirp is proposed and experimentally demonstrated. For such a scheme, a continuous-wave (CW) light with a frequency of finj is split into two parts. One part is passing through a Mach-Zehnder modulator (MZM) driven by a modified sawtooth signal, and then its intensity varies with time as a sawtooth wave. Such a light is injected to a DFB-SL for generating a single linearly chirped microwave (single-LCM) signal. The other part of the CW light with frequency of finj is sent to a phase modulator (PM) driven by a sinusoidal signal, and one of higher-order sidebands is selected by a tunable optical filter and taken as the referenced light. Through heterodyning the referenced light with the single-LCM signal, a dual-LCM signal with identical (or complementary) chirp can be obtained. The experimental results demonstrate that, by adjusting the injection parameters and the frequency of the sinusoidal signal loaded on the PM, the central frequency of the generated dual-LCM signal can be widely tuned. For the period of the sawtooth signal at 10 µs, the bandwidth for each frequency band included in the generated dual-LCM signal is 19.36 GHz under identical chirp and 16.98 GHz under complementary chirp, respectively. Correspondingly, the time bandwidth product (TBWP) for each frequency band can reach 1.936 × 105 under identical chirp and 1.698 × 105 under complementary chirp, respectively.

3.
Opt Express ; 29(16): 26265-26274, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614936

RESUMO

Frequency-modulated continuous-wave (FMCW) can be acquired by using a distributed feedback semiconductor laser (DFB-SL) operating at period-one (P1) oscillation under an optical injection modulated by a Mach-Zehnder modulator (MZM). In this work, through introducing another MZM to establish cascade-modulated optical injection, an improved photonic scheme for generating high-quality FMCW is proposed and experimentally demonstrated. The experimental results indicate that, under appropriate injection parameters, the central frequency of the generated FMCW is widely tunable, and the bandwidth is larger than that obtained under a single MZM modulation. Further introducing optical feedback for suppressing the phase noise, the frequency comb contrast of the generated FMCW can be improved obviously.

4.
Appl Opt ; 59(9): 2935-2941, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225845

RESUMO

Based on a three-level model for quantum dot (QD) lasers, the characteristics of the photonic microwave generated by a QD laser simultaneously subject to optical injection and optical feedback are numerically investigated. First, the performance of the microwave signal generated by an optical injected QD laser operating at period one state are analyzed, and the mappings of the frequency and intensity of the generated microwave in the parameter space of the frequency detuning and injection strength are given, which are roughly similar to those reported experimentally. Next, an optical feedback loop is further introduced to the optically injected QD laser for compressing the linewidth of the microwave signal, and the results demonstrate that the linewidth of the generated microwave can be reduced by at least 1 order of magnitude under suitable feedback parameters. Finally, the effect of the linewidth enhancement factor on the generated microwave signal is analyzed.

5.
Appl Opt ; 58(30): 8160-8166, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31674486

RESUMO

A multi-channel wideband chaotic signal generation scheme is proposed and numerically investigated based on a slave multi-transverse mode vertical-cavity surface-emitting laser (SL) subject to chaotic optical injection from a master multi-transverse mode vertical-cavity surface-emitting laser (ML) with optical feedback. Taking two low-order transverse modes, LP01 and LP11, as an example for numerical calculations, the simulated results show that under suitable optical feedback both the LP01 and LP11 modes (two-channel) of a ML can be driven into the chaotic states where their bandwidths are relatively narrow at a level about 8 GHz. Further injecting the two chaotic signals into a SL, for the case of the globally chaotic optical injection, the SL can output two-channel chaotic signals with wide bandwidths above 20 GHz under appropriate operation parameters. Moreover, the case of SL with mode-selective chaotic optical injection is also analyzed.

6.
Appl Opt ; 58(5): 1271-1275, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30873997

RESUMO

We experimentally investigate the nonlinear dynamics of two mutually coupled 1550 nm multi-transverse-mode vertical-cavity surface-emitting lasers (VCSELs). The results show that, through continuously varying the coupling coefficient, the Y-polarization fundamental transverse mode and the Y-polarization first-order transverse mode in both VCSELs can be driven into period one, period doubling, multi-period, and chaos states. When the two mutually coupled VCSELs are simultaneously operating in the periodic state, localized synchronizations between the corresponding modes are observed. Moreover, mappings of dynamical states for typical transverse modes of the two mutually coupled VCSELs in the parameter space of the frequency detuning and coupling coefficient are specified.

7.
Opt Express ; 26(8): 10211-10219, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715961

RESUMO

A reservoir computing (RC) system based on a semiconductor laser (SL) with double optical feedback and optical injection is proposed, and the prediction performance of such a system is numerically investigated via Santa Fe Time-Series Prediction task. The simulation results indicate that the RC system can yield a good prediction performance. Through optimizing some relevant operating parameters, ultra-fast information processing rates up to Gb/s level can be realized for the prediction error is below 3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...