Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Inorg Chem ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941590

RESUMO

Enantioselective synthesis of homochiral rare earth clusters is still a great challenge. In this work, we developed an efficient "cluster to cluster" approach, that is, a pair of enantiomerical R/S-{Nd8Fe3}-oxo clusters were successfully obtained from the presynthesized racemic {Nd9Fe2}-oxo cluster. R/S-hydrobenzoin ligands trigger the transformation of the pristine clusters by an SN2-like mechanism. Compared to the pristine cluster with an achiral core, the new cluster exhibits hierarchical chirality, from ligand chirality to interface chirality, then to helix chirality, and finally to supramolecular double helix chirality. The spectral experiments monitored the transformation and confirmed distinctly structure-related optical activity. The enantiomeric pure cluster also exhibits a potential asymmetric catalytic activity.

2.
World J Gastrointest Oncol ; 16(1): 90-101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38292843

RESUMO

BACKGROUND: Surgical resection remains the primary treatment for hepatic malignancies, and intraoperative bleeding is associated with a significantly increased risk of death. Therefore, accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment. AIM: To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes. METHODS: The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020. Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding. A prediction model was developed using Python programming language, and its accuracy was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS: Among 406 primary liver cancer patients, 16.0% (65/406) suffered massive intraoperative bleeding. Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients: ascites [odds ratio (OR): 22.839; P < 0.05], history of alcohol consumption (OR: 2.950; P < 0.015), TNM staging (OR: 2.441; P < 0.001), and albumin-bilirubin score (OR: 2.361; P < 0.001). These variables were used to construct the prediction model. The 406 patients were randomly assigned to a training set (70%) and a prediction set (30%). The area under the ROC curve values for the model's ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set. CONCLUSION: The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors: ascites, history of alcohol consumption, TNM staging, and albumin-bilirubin score. Consequently, this model holds promise for enhancing individualised surgical planning.

3.
Adv Sci (Weinh) ; 11(6): e2306190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049204

RESUMO

Radiotherapy (RT) resistance is an enormous challenge in glioblastoma multiforme (GBM) treatment, which is largely associated with DNA repair, poor distribution of reactive radicals in tumors, and limited delivery of radiosensitizers to the tumor sites. Inspired by the aberrant upregulation of RAD51 (a critical protein of DNA repair), scavenger receptor B type 1 (SR-B1), and C-C motif chemokine ligand 5 (CCL5) in GBM patients, a reduction-sensitive nitric oxide (NO) donor conjugate of gemcitabine (RAD51 inhibitor) (NG) is synthesized as radio-sensitizer and a CCL5 peptide-modified bioinspired lipoprotein system of NG (C-LNG) is rationally designed, aiming to preferentially target the tumor sites and overcome the RT resistance. C-LNG can preferentially accumulate at the orthotopic GBM tumor sites with considerable intratumor permeation, responsively release the gemcitabine and NO, and then generate abundant peroxynitrite (ONOO- ) upon X-ray radiation, thereby producing a 99.64% inhibition of tumor growth and a 71.44% survival rate at 120 days in GL261-induced orthotopic GBM tumor model. Therefore, the rationally designed bioinspired lipoprotein of NG provides an essential strategy to target GBM and overcome RT resistance.


Assuntos
Glioblastoma , Oxidiazóis , Radiossensibilizantes , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Glioblastoma/genética , Gencitabina , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Lipoproteínas
4.
Polymers (Basel) ; 15(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959915

RESUMO

The catalytic conversion of cellulose to lactic acid (LA) has garnered significant attention in recent years due to the potential of cellulose as a renewable and sustainable biomass feedstock. Here, a series of Au/W-ZnO catalysts were synthesized and employed to transform cellulose into LA. Through the optimization of reaction parameters and catalyst compositions, we achieved complete cellulose conversion with a selectivity of 54.6% toward LA over Au/W-ZnO at 245 °C for 4 h. This catalyst system also proved effective at converting cotton and kenaf fibers. Structural and chemical characterizations revealed that the synergistic effect of W, ZnO, and Au facilitated mesoporous architecture generation and the establishment of an adequate acidic environment. The catalytic process proceeded through the hydrolysis of cellulose to glucose, isomerization to fructose, and its subsequent conversion to LA, with glucose isomerization identified as the rate-limiting step. These findings provide valuable insights for developing high-performance catalytic systems to convert cellulose.

5.
Inorg Chem ; 62(46): 19153-19158, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37934703

RESUMO

The ability to conceptually mimic biomolecules to construct emergency-functional homospiral aggregates remains a long-standing challenge. Herein, we report artificial homohelical assembly by blending inorganic polyoxometalates (POMs) and organic cyclodextrin molecules. The chiral double-helical chains have been achieved by a left-hand arrangement of trimer-trimer. The trimer is formed by three {Mo8}@α-CD inclusive complexes as a Whittaker-style paddle wheel. During the process of assembly, chiral transfer and amplification from molecule to superstructure were observed. The enantioselective adsorption of the homohelical aggregate toward (R/S)-1,1'-binaphthyl-2,2'-diamine was further demonstrated. The interaction of {Mo8} and α-CD in solution was investigated. This work opens a wide scope for the design of a homohelix, enriching POM-based inorganic-organic materials.

6.
Inorg Chem ; 62(41): 16913-16918, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37797212

RESUMO

CdE (E = S, Se) quantum dots (QDs) with a broad and large Stokes shift PL emission have emerged as potential materials for white-light LEDs. However, this surface-related emission of nanocrystals is currently limited by low quantum efficiency. Herein, a convenient noninjected one-pot method at a relatively low temperature to prepare CdS QDs was readily achieved. The CdS-368 QD displays intense broad yellow emission in both solution and the solid state at room temperature. The coligation of organic and inorganic ligands passivates the electron trap states at the QD surface and suppresses nonradiative recombination, which is responsible for the high stability of colloids in organic solvents and the distinct fluorescence quantum yield.

7.
Int J Biol Macromol ; 253(Pt 8): 127601, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871718

RESUMO

The objective of this research study is to develop novel composite nanofibers based on methacrylamide chitosan (ChMA)/poly(ε-caprolactone) (PCL) materials by the dual crosslinking and coaxial-electrospinning strategies. The prepared ChMA/PCL composite nanofibers can sequentially deliver tannic acid and curcumin drugs to synergistically inhibit bacterial reproduction and accelerate wound healing. The rapid delivery of tannic acid is expected to inhibit pathogenic microorganisms and accelerate epithelialization in the early stage, while the slow and sustained release of curcumin is with the aim of relieving chronic inflammatory response and inducing dermal tissue maturation in the late stage. Meanwhile, dual-drugs sequentially released from the membrane exhibited a DPPH free radical scavenging rate of ca. 95 % and an antibacterial rate of above 85 %. Moreover, the membrane possessed great biocompatibility in vitro and significantly inhibited the release of pro-inflammatory factors (IL-1ß and TNF-α) in vivo. Animal experiments showed that the composite membrane by means of the synergistic effect of polyphenol drugs and ChMA nanofibers, could significantly alleviate macrophage infiltration and accelerate the healing process of wounds. From the above, the as-prepared ChMA-based membrane with a stage-wise release pattern of drugs could be a promising bioengineered construct for wound healing application.


Assuntos
Quitosana , Curcumina , Nanofibras , Animais , Quitosana/química , Nanofibras/química , Curcumina/farmacologia , Curcumina/química , Preparações Farmacêuticas , Cicatrização , Poliésteres/química , Antibacterianos/farmacologia
8.
Dalton Trans ; 52(37): 13063-13067, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702078

RESUMO

In this paper, we report the successful assembly of achiral {Ln6M} ([Ln6M(µ3-OH)8(acac)12(CH3O)x(CH3OH)y], Ln = La, M = Mn, Co, Fe) and chiral {Nd9Fe2} ([Nd9Fe2(µ4-O)(µ3-OH)14(acac)16(NO3)(CH3OH)2(H2O)3]) rare earth clusters using achiral rigid ligands and a transition metal doping strategy. {Ln6M} can be viewed as the fusion of two {Ln3M} tetrahedrons by sharing vertices. {Nd9Fe2} results from the fusion of four {Ln3M} tetrahedrons by vertice and edge sharing. The substitution of Ln with transition metal leads to changes in the coordination pattern around neighboring Ln, which triggers the switch of metal center chirality. This study demonstrates the potentiality of utilizing transition metal doping and rigid ligand to control the chirality of rare earth clusters. In addition, the photocatalytic CO2 activity of these transition metal-doped rare earth clusters has been studied.

9.
Front Endocrinol (Lausanne) ; 14: 1185799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351109

RESUMO

Objective: Breast cancer is a prevalent malignancy that predominantly affects women. The development and progression of this disease are strongly influenced by the tumor microenvironment and immune infiltration. Therefore, investigating immune-related genes associated with breast cancer prognosis is a crucial approach to enhance the diagnosis and treatment of breast cancer. Methods: We analyzed data from the TCGA database to determine the proportion of invasive immune cells, immune components, and matrix components in breast cancer patients. Using this data, we constructed a risk prediction model to predict breast cancer prognosis and evaluated the correlation between KLRB1 expression and clinicopathological features and immune invasion. Additionally, we investigated the role of KLRB1 in breast cancer using various experimental techniques including real-time quantitative PCR, MTT assays, Transwell assays, Wound healing assays, EdU assays, and flow cytometry. Results: The functional enrichment analysis of immune and stromal components in breast cancer revealed that T cell activation, differentiation, and regulation, as well as lymphocyte differentiation and regulation, play critical roles in determining the status of the tumor microenvironment. These DEGs are therefore considered key factors affecting TME status. Additionally, immune-related gene risk models were constructed and found to be effective predictors of breast cancer prognosis. Further analysis through KM survival analysis and univariate and multivariate Cox regression analysis demonstrated that KLRB1 is an independent prognostic factor for breast cancer. KLRB1 is closely associated with immunoinfiltrating cells. Finally, in vitro experiments confirmed that overexpression of KLRB1 inhibits breast cancer cell proliferation, migration, invasion, and DNA replication ability. KLRB1 was also found to inhibit the proliferation of breast cancer cells by blocking cell division in the G1/M phase. Conclusion: KLRB1 may be a potential prognostic marker and therapeutic target associated with the microenzymic environment of breast cancer tumors, providing a new direction for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Prognóstico , Diferenciação Celular , Bioensaio , Bases de Dados Factuais , Microambiente Tumoral/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK
10.
Carbohydr Polym ; 317: 121062, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364950

RESUMO

Water-soluble polyvinyl alcohol/carboxymethyl chitosan (PVA/CMCS) blend fiber films were successfully prepared using a plane-collection centrifugal spinning machine. The addition of CMCS significantly increased the shear viscosity of the PVA/CMCS blend solution. The effects of spinning temperature on the shear viscosity and the centrifugal spinnability of PVA/CMCS blend solution were discussed. The PVA/CMCS blend fibers were uniform, and their average diameters ranged from 1.23 µm to 29.01 µm. It was found that the CMCS was distributed evenly in the PVA matrix and increased the crystallinity of PVA/CMCS blend fiber films. The hydrogen bonds between the hydroxyl group of PVA and the carboxymethyl group of CMCS were also detected. An in vitro cell study of human skin fibroblast cells on the PVA/CMCS blend fiber films confirmed biocompatibility. The maximum tensile strength and elongation at break of PVA/CMCS blend fiber films could reach 3.28 MPa and 29.52 %, respectively. The colony-plate-count tests indicated that the PVA16-CMCS2 presented 72.05 % and 21.36 % antibacterial rates against Staphylococcus aureus (104 CFU/mL) and Escherichia coli (103 CFU/mL), respectively. These values indicated that the newly prepared PVA/CMCS blend fiber films are promising materials for cosmetic and dermatological applications.


Assuntos
Quitosana , Humanos , Quitosana/farmacologia , Quitosana/química , Álcool de Polivinil/química , Água/química , Antibacterianos/farmacologia , Antibacterianos/química , Resistência à Tração , Escherichia coli
11.
Small ; 19(43): e2302768, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381638

RESUMO

The Li-CO2 battery has great potential for both CO2 utilization and energy storage, but its practical application is limited by low energy efficiency and short cycle life. Efficient cathode catalysts are needed to address this issue. Herein, this work reports on molecularly dispersed electrocatalysts (MDEs) of nickel phthalocyanine (NiPc) anchored on carbon nanotubes (CNTs) as the cathode catalyst for Li-CO2 batteries. The dispersed NiPc molecules efficiently catalyze CO2 reduction, while the conductive and porous CNTs networks facilitate CO2 evolution reaction, leading to enhanced discharging and charging performance compared to the NiPc and CNTs mixture. Octa-cyano substitution on NiPc (NiPc-CN) further enhances the interaction between the molecule and CNTs, resulting in better cycling stability. The Li-CO2 battery with the NiPc-CN MDE cathode shows a high discharge voltage of 2.72 V and a small discharging-charging potential gap of 1.4 V, and can work stably for over 120 cycles. The reversibility of the cathode is confirmed by experimental characterizations. This work lays a foundation for the development of molecular catalysts for Li-CO2 battery cathodes.

12.
Langmuir ; 39(20): 7184-7191, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167539

RESUMO

Benefiting from the wide-range absorption and adjustable energy gap, carbon dots (C-dots) have attracted a great deal of attention and they have been used to sensitize semiconductor nanocomposites to boost the efficiency of energy conversion devices, while there is still a lack of fundamental understanding of the interaction between such materials and their influence on the catalytic activity on the reaction process. In this study, C-dots were used to modify TiO2 to form a direct Z-scheme (DZS) junction for enhancement of the photocatalytic activity. The C-dot/TiO2 composite was prepared by ultrasonication at room temperature through coupling between the Ti-O-C bond and electrostatic interaction. The C-dots can dramatically enhance the absorption of the composite by forming the DZS, and the composite is enabled to generate more free radicals, which facilitate ∼10 times higher photocatalytic activity compared to that of TiO2. As a proof of concept, the as-prepared C-dot/TiO2 was used for textile wastewater dye degradation. This study provides an efficient approach for room-temperature preparation of C-dot/TiO2 composites with high photocatalytic activity.

13.
Waste Manag ; 157: 159-167, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543059

RESUMO

The demand for polypropylene (PP) melt-blown materials has dramatically increased due to the COVID-19 pandemic. It has caused serious environmental problems because of the lack of effective treatment for the waste PP melt-blown materials. In this study, we propose a green and sustainable recycling method to create PP sponges from waste PP melt-blown material for oil spill cleaning by freeze-drying and thermal treatment techniques. The recycling method is simple and without secondary pollution to the environment. The developed recycling method successfully transforms 2D laminar dispersed PP microfibers into elastic sponges with a 3D porous structure, providing the material with good mechanical properties and promotes its potential application in the field of oil spill cleaning. The morphology structure, thermal properties, mechanical properties, and oil absorption properties are tested and characterized. The PP sponges with a three-dimensional porous network structure show an exceedingly low density of >0.014 g/cm3, a high porosity of <98.77 %, and a high water contact angle range of 130.4-139.9°. Moreover, the PP sponges own a good absorption capacity of <47.61 g/g for different oil and solvents. In particular, the compressive modulus of the PP sponges is 33.59-201.21 kPa, which is higher than that of most other fiber-based porous materials, indicating that the PP sponges have better durability under the same force. The excellent comprehensive performance of the PP sponges demonstrates the method developed in this study has large application potential in the field of the recycle of waste PP melt-blown materials.


Assuntos
COVID-19 , Polipropilenos , Humanos , Polipropilenos/química , Pandemias , Resíduos
14.
Small Methods ; 7(1): e2201213, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36538738

RESUMO

Single-atom catalysts (SACs) are of interest for chemical transformations of significant energy and environmental relevance because of the envisioned efficient use of active sites and the flexibility in tuning their coordination environment. Future advancement in this vein hinges upon the ability to further increase the number and accessibility of active sites in addition to fine-tuning their chemical environment. In this work, a Ni SAC is reported with a unique hierarchical hollow structure (Ni/HH) that allows increased accessibility of the active sites. The successful obtainment of such a uniquely structured catalyst was enabled by the judiciously chosen solvent mixtures for the preparation of the precursor whose hierarchical feature is maintained during the subsequent pyrolysis and etching of the pyrolysis product. Comparative catalytic and mechanistic studies with reference to three closely related but more compact Ni SACs established the superior performance of Ni/HH for selective electroreduction of CO2 to CO. Experimental analyses by in situ attenuated total reflection surface-enhanced infrared spectroscopy reveal that it is the facilitated formation of the *COOH intermediate in the rate-determining step that leads to the enhanced reaction kinetics and the overall catalytic performance.

15.
Neoplasma ; 69(6): 1437-1444, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36353935

RESUMO

Pulmonary sarcomatoid carcinoma (PSC) is an aggressive and poorly differentiated type of non-small cell lung carcinoma. Because of the rarity of PSC, the efficacy and toxicity of immunotherapy remain unclear. Hence, the aim of this study was to evaluate the efficacy and safety of immune checkpoint inhibitors (ICIs) for the treatment of advanced PSC. The study cohort was limited to 33 patients with pathologically confirmed PSC treated with ICIs in four hospitals in China from March 2018 to March 2022. Expression of programmed death ligand 1 (PD-L1) was detected by immunohistochemical analysis. Categorical variables were compared with the Fisher exact test and survival analysis was conducted with the Kaplan-Meier method. Of the 33 PSC patients, 8 (24.2%) received monotherapy with ICIs and 25 (75.8%) received combination therapy with ICIs. The objective response rate (ORR) and disease control rate (DCR) were 36.4% and 78.8%, respectively. The median durations of progression-free survival (PFS) and overall survival (OS) were 6.07 and 21.33 months, respectively. PD-L1 status in 16 available samples was assessed, which included 30.3% PD-L1-positive patients. The ORRs for PD-L1-positive vs. -negative patients were 50.0% and 90.0%, the DCR was 33.3% and 83.3%, and the median PFS was 17.50 and 6.07 months, respectively (p=0.812). The median OS was not reached in PD-L1-positive and -negative patients (p=0.655). The incidence of immune-related adverse (irAEs) was 48.5% and mainly included grade 1 or 2 (39.4%), while the incidence of grade 3 or 4 was 9.1%. Pneumonia (9.1%) and skin rash (9.1%) were the most frequent irAEs. Immunotherapy with ICIs was a promising regimen to improve the prognosis of patients with advanced PSC.


Assuntos
Carcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Inibidores de Checkpoint Imunológico/efeitos adversos , Antígeno B7-H1 , Estudos Retrospectivos
16.
Chem Sci ; 13(37): 11260-11265, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320459

RESUMO

The electrocatalytic 2e- oxygen reduction reaction (2e- ORR) provides an appealing pathway to produce hydrogen peroxide (H2O2) in a decentralized and clean manner, which drives the demand for developing high selectivity electrocatalysts. However, current understanding on selectivity descriptors of 2e- ORR electrocatalysts is still insufficient, limiting the optimization of catalyst design. Here we study the catalytic performances of a series of metal phthalocyanines (MPcs, M = Co, Ni, Zn, Cu, Mn) for 2e- ORR by combining density functional theory calculations with electrochemical measurements. Two descriptors (ΔG *O - ΔG *OOH and ΔG *H2O2 ) are uncovered for manipulating the selectivity of H2O2 production. ΔG *O - ΔG *OOH reflects the preference of O-O bond breaking of *OOH, affecting the intrinsic selectivities. Due to the high value of ΔG *O - ΔG *OOH, the molecularly dispersed electrocatalyst (MDE) of ZnPc on carbon nanotubes exhibits high selectivity, even superior to the previously reported NiPc MDE. ΔG *H2O2 determines the possibility of further H2O2 reduction to affect the measured selectivities. Enhancing the hydrophobicity of the catalytic layer can increase ΔG *H2O2 , leading to selectivity improvement, especially under high H2O2 production rates. In the gas diffusion electrode measurements, both ZnPc and CoPc MDEs with polytetrafluoroethylene (PTFE) exhibit low overpotentials, high selectivities, and good stability. This study provides guidelines for rational design of 2e- ORR electrocatalysts.

17.
Dalton Trans ; 51(45): 17145-17149, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36350076

RESUMO

The synthesis of atomically precise semiconductors Ag-S clusters is a subject of intense research interest, yet the formation mechanism of such nanoclusters remains obscure due to their uncontrolled fast nucleation process in solution. Herein, we have investigated the reaction mechanism responsible for {Ag32S3} nucleation using UV, ESI-MS, NMR and SCXRD analyses. Triphenylphosphorus sulfide (PPh3S) was surprisingly found to slow down the kinetic process of the cluster nucleation. Furthermore, a key precursor [Ag2(Ph3PS)4]2+ was captured, which was attacked by Agn(CCBut)m and traces of water to generate {Ag32S3}. This mechanism provides valuable new insights into the synthesis of inorganic magic-size clusters.

18.
Chem Commun (Camb) ; 58(98): 13616-13619, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36408598

RESUMO

The development of novel systems for chiral polyoxometalates (POMs) is an attractive research field because of their fascinating topological structures and well-defined functions. Herein, we have developed a new reaction route for the synthesis of two unprecedented chiral Waugh POM-based supramolecular architectures. Single-crystal X-ray diffraction reveals that the architectures exhibit a wavy three-dimensional framework and bamboo-rod-connected framework upon regulating the size of the cyclodextrin and the stacking pattern of the D3 symmetric Waugh {MnMo9}. Solution studies using NMR, circular dichroism and isothermal titration calorimetry corroborate nicely the very weak interactions between the components. The intricate chiral microenvironment originating from the hybrid frameworks may be responsible for the selective recognition of the Λ-{MnMo9} enantiomer. This study highlights the importance of the asymmetric configuration of the POM for designing CD/POM assemblies and understanding their chirality.


Assuntos
Ciclodextrinas
19.
Artigo em Inglês | MEDLINE | ID: mdl-36267089

RESUMO

Purpose: To investigate the role and molecular mechanism of HDAC2 in glioma. Methods: GSE16011, GSE31262, and GSE90598 datasets were used to identify co-expressed genes, GO analysis, and KEGG analysis to identify gene enrichment pathways, and PPI networks were constructed to identify gene interrelationships. HDAC2 enrichment on DNMT3B promoter and DNMT3B enrichment on Bcl2 CpG island was detected by a ChIP assay. The expression, prognosis, and hierarchical distribution of HDAC2, DNMT3B, and Bcl2 were examined in the CGGA database, and the correlation between HDAC2 and DNMT3B, Bcl2, and DNMT3B and Bcl2 was assessed. Results: The HDAC2-DNMT3B-Bcl2 axis is differentially expressed and interacts in gliomas. HDAC2 activates the transcriptional activity of DNMT3B, and DNMT3B inhibits the expression of Bcl2. HDAC2 and DNMT3B are highly expressed in gliomas and have a poor prognosis, while Bcl2 is lowly expressed in gliomas and has a good prognosis. Conclusion: HDAC2 promotes DNMT3B transcriptional repression of Bcl2 expression and Wnt pathway activity, thereby activating glioma cell activity in vitro and in vivo.

20.
Nanoscale Adv ; 4(7): 1758-1769, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132161

RESUMO

Compared to noble metals, transition metal oxides (TMOs) have positive development prospects in the field of electrocatalysis, and the synergy between the elements in multi-element TMO-based materials can improve their catalytic activity. However, it is still a challenge to synthesize multi-component TMO-based catalysts and deeply understand the effects of components on the catalytic performance of the catalysts. Here, we demonstrate multi-element ultra-small-sized nanofibers for efficient hydrogen production. The ternary NiFeCoO nanofiber-based electrode reached an overpotential of 82 mV at the current density of 10 mA cm-2 with a Tafel slope of 56 mV dec-1 in 1 M KOH, which are close to those of Pt plate (66 mV at 10 mA cm-2; the Tafel slope is 32 mV dec-1). In addition, the current density maintained 97% of its initial value after 10 h operation. We used the ternary NiFeCoO nanofiber-based electrode as an efficient counter electrode in photoelectrochemical hydrogen production to demonstrate the versatility of these nanofibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...