Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8334, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097609

RESUMO

Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antídotos , Ubiquitinação , Complexo de Golgi/metabolismo , Ubiquitina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
PLoS Biol ; 21(11): e3002372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939137

RESUMO

Selective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8. However, ER-phagy/nucleophagy cargos fail to reach the vacuole. Instead, nucleus- and cortical-ER-derived membrane structures not enclosed within autophagosomes accumulate in the cytoplasm. Intriguingly, the outer membranes of nucleus-derived structures remain continuous with the nuclear envelope-ER network, suggesting a possible outer membrane fission defect during cargo separation from source compartments. We find that the ER-phagy role of Yep1 relies on its abilities to self-interact and shape membranes and requires its C-terminal amphipathic helices. Moreover, we show that human REEP1-4 and budding yeast Atg40 can functionally substitute for Yep1 in ER-phagy, and Atg40 is a divergent ortholog of Yep1 and REEP1-4. Our findings uncover an unexpected mechanism governing the autophagosomal enclosure of ER-phagy/nucleophagy cargos and shed new light on the functions and evolution of REEP family proteins.


Assuntos
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Autofagia/genética , Retículo Endoplasmático/metabolismo , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Membrana Transportadoras/metabolismo
3.
Sci Adv ; 9(48): eadj4605, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019907

RESUMO

Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.


Assuntos
Proteínas de Membrana , Complexo de Endopeptidases do Proteassoma , Humanos , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteostase , Degradação Associada com o Retículo Endoplasmático , Camundongos Nus , Lipídeos
4.
Front Cell Infect Microbiol ; 13: 1170748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260707

RESUMO

Globally, liver cancer poses a serious threat to human health and quality of life. Despite numerous studies on the microbial composition of the gut in hepatocellular carcinoma (HCC), little is known about the interactions of the gut microbiota and metabolites and their role in HCC. This study examined the composition of the gut microbiota and serum metabolic profiles in 68 patients with HCC, 33 patients with liver cirrhosis (LC), and 34 healthy individuals (NC) using a combination of metagenome sequencing and liquid chromatography-mass spectrometry (LC-MS). The composition of the serum metabolites and the structure of the intestinal microbiota were found to be significantly altered in HCC patients compared to non-HCC patients. LEfSe and metabolic pathway enrichment analysis were used to identify two key species (Odoribacter splanchnicus and Ruminococcus bicirculans) and five key metabolites (ouabain, taurochenodeoxycholic acid, glycochenodeoxycholate, theophylline, and xanthine) associated with HCC, which then were combined to create panels for HCC diagnosis. The study discovered that the diagnostic performance of the metabolome was superior to that of the microbiome, and a panel comprised of key species and key metabolites outperformed alpha-fetoprotein (AFP) in terms of diagnostic value. Spearman's rank correlation test was used to determine the relationship between the intestinal flora and serum metabolites and their impact on hepatocarcinogenesis and progression. A random forest model was used to assess the diagnostic performance of the different histologies alone and in combination. In summary, this study describes the characteristics of HCC patients' intestinal flora and serum metabolism, demonstrates that HCC is caused by the interaction of intestinal flora and serum metabolites, and suggests that two key species and five key metabolites may be potential markers for the diagnosis of HCC.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Qualidade de Vida , Metaboloma , Biomarcadores , Cirrose Hepática/diagnóstico , Biomarcadores Tumorais
5.
J Vis Exp ; (194)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184276

RESUMO

Analyzing the precise localization of protein molecules in cells with ultrastructural resolution is of great significance for the study of various physiological or pathological processes in all living organisms. Therefore, the development of clonable tags that can be used as electron microscopy probes is of great value, just as fluorescent proteins have played a crucial role in the field of optical imaging. The autonucleation suppression mechanism (ANSM) was recently uncovered, which allows for the specific synthesis of gold nanoparticles (AuNPs) on cysteine-rich tags, such as metallothionein (MT) and antifreeze protein (AFP). Based on the ANSM, an electron microscopy labeling technology was developed, which enables the specific detection of tagged proteins in prokaryotic and eukaryotic cells with an unprecedented labeling efficiency. This study illustrates a protocol for the detection of MTn (an engineered MT variant lacking aldehyde-reactive residues) fusion proteins in mammalian cells with well-preserved ultrastructure. In this protocol, high-pressure freezing and freeze-substitution fixation were performed using non-aldehyde fixatives (such as tannic acid, uranyl acetate) to preserve near-native ultrastructure and avoid damage to the tag activity caused by aldehyde crosslinking. A simple one-step rehydration was used prior to the ANSM-based AuNP synthesis. The results showed that the tagged proteins targeted various organelles, including the membranes and the lumen of the endoplasmic reticulum (ER), and mitochondrial matrices were detected with high efficiency and specificity. This research provides biologists with a robust protocol to address an enormous range of biological questions at the single-molecule level in cellular ultrastructural contexts.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Ouro/química , Microscopia Eletrônica , Preservação Biológica , Fixadores , Mamíferos
6.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37214852

RESUMO

Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation (ERAD) and membrane protein trafficking. Rpt2 G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by m yristoyl- a nchored p roteasomes (MAPs) in health and disease.

7.
Cell Chem Biol ; 30(3): 278-294.e11, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36827981

RESUMO

Mitochondrial fission is critical for mitochondrial dynamics and homeostasis. The dynamin superfamily GTPase DRP1 is recruited by three functionally redundant receptors, MFF, MiD49, and MiD51, to mitochondria to drive fission. Here, we exploit high-content live-cell imaging to screen for mitochondrial fission inhibitors and have developed a covalent compound, mitochondrial division inhibitor (MIDI). MIDI treatment potently blocks mitochondrial fragmentation induced by mitochondrial toxins and restores mitochondrial morphology in fusion-defective cells carrying pathogenic mitofusin and OPA1 mutations. Mechanistically, MIDI does not affect DRP1 tetramerization nor DRP1 GTPase activity but does block DRP1 recruitment to mitochondria. Subsequent biochemical and cellular characterizations reveal an unexpected mechanism that MIDI targets DRP1 interaction with multiple receptors via covalent interaction with DRP1-C367. Taken together, beyond developing a potent mitochondrial fission inhibitor that profoundly impacts mitochondrial morphogenesis, our study establishes proof of concept for developing protein-protein interaction inhibitors targeting DRP1.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Dinaminas/genética , Dinaminas/química , Mitocôndrias , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química
8.
Cell Rep ; 41(10): 111774, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476853

RESUMO

Mitochondrial damage causes mitochondrial DNA (mtDNA) release to activate the type I interferon (IFN-I) response via the cGAS-STING pathway. mtDNA-induced inflammation promotes autoimmune- and aging-related degenerative disorders. However, the global picture of inflammation-inducing mitochondrial damages remains obscure. Here, we have performed a mitochondria-targeted CRISPR knockout screen for regulators of the IFN-I response. Strikingly, our screen reveals dozens of hits enriched with key regulators of cristae architecture, including phospholipid cardiolipin and protein complexes such as OPA1, mitochondrial contact site and cristae organization (MICOS), sorting and assembly machinery (SAM), mitochondrial intermembrane space bridging (MIB), prohibitin (PHB), and the F1Fo-ATP synthase. Disrupting these cristae organizers consistently induces mtDNA release and the STING-dependent IFN-I response. Furthermore, knocking out MTX2, a subunit of the SAM complex whose null mutations cause progeria in humans, induces a robust STING-dependent IFN-I response in mouse liver. Taken together, beyond revealing the central role of cristae architecture to prevent mtDNA release and inflammation, our results mechanistically link mitochondrial cristae disorganization and inflammation, two emerging hallmarks of aging and aging-related degenerative diseases.


Assuntos
DNA Mitocondrial , Humanos , Animais , Camundongos , DNA Mitocondrial/genética
9.
Nat Commun ; 13(1): 2673, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562374

RESUMO

The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions.


Assuntos
Membranas Mitocondriais , Fosforilação Oxidativa , Actinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Miosinas/metabolismo
10.
Biol Reprod ; 107(2): 619-634, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403672

RESUMO

During spermiogenesis, the formation of the mitochondrial sheath is critical for male fertility. The molecular processes that govern the development of the mitochondrial sheath remain unknown. Whether TBC1D21 serves as a GTPase-activating protein (GAP) for GTP hydrolysis in the testis is unclear, despite recent findings indicating that it collaborates with numerous proteins to regulate the formation of the mitochondrial sheath. To thoroughly examine the property of TBC1D21 in spermiogenesis, we applied the CRISPR/Cas9 technology to generate the Tbc1d21-/- mice, Tbc1d21D125A R128K mice with mutation in the GAP catalytic residues (IxxDxxR), and Tbc1d21-3xFlag mice. Male Tbc1d21-/- mice were infertile due to the curved spermatozoa flagella. In vitro fertilization is ineffective for Tbc1d21-/- sperm, although healthy offspring were obtained by intracytoplasmic sperm injection. Electron microscopy revealed aberrant ultrastructural changes in the mitochondrial sheath. Thirty-four Rab vectors were constructed followed by co-immunoprecipitation, which identified RAB13 as a novel TBC1D21 binding protein. Interestingly, infertility was not observed in Tbc1d21D125A R128K mice harboring the catalytic residue, suggesting that TBC1D21 is not a typical GAP for Rab-GTP hydrolysis. Moreover, TBC1D21 was expressed in the sperm mitochondrial sheath in Tbc1d21-3xFlag mice. Immunoprecipitation-mass spectrometry demonstrated the interactions of TBC1D21 with ACTB, TPM3, SPATA19, and VDAC3 to regulate the architecture of the sperm midpiece. The collective findings suggest that TBC1D21 is a scaffold protein required for the organization and stabilization of the mitochondrial sheath morphology.


Assuntos
Infertilidade Masculina , Sêmen , Animais , Proteínas Ativadoras de GTPase/genética , Guanosina Trifosfato/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Sêmen/metabolismo , Cauda do Espermatozoide , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Proteínas rab de Ligação ao GTP/genética
11.
Proc Natl Acad Sci U S A ; 119(14): e2121552119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344427

RESUMO

SignificanceDiabetic neuropathy is a commonly occurring complication of diabetes that affects hundreds of millions of patients worldwide. Patients suffering from diabetic neuropathy experience abnormal sensations and have damage in their peripheral nerve axons as well as myelin, a tightly packed Schwann cell sheath that wraps around axons to provide insulation and increases electrical conductivity along the nerve fibers. The molecular events underlying myelin damage in diabetic neuropathy are largely unknown, and there is no efficacious treatment for the disease. The current study, using a diabetic mouse model and human patient nerve samples, uncovered a molecular mechanism underlying myelin sheath damage in diabetic neuropathy and provides a potential treatment strategy for the disease.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Animais , Axônios , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/prevenção & controle , Humanos , Camundongos , Bainha de Mielina , Nervos Periféricos , Proteínas Quinases , Células de Schwann/fisiologia
12.
J Integr Plant Biol ; 64(4): 901-914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043580

RESUMO

Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Fotossíntese/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34747981

RESUMO

During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.


Assuntos
Antígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostase , Meiose , Ploidias , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Corpos Polares do Fuso/metabolismo , Cromossomos Fúngicos/metabolismo , Esporos Fúngicos/metabolismo , Zigoto/citologia
14.
Cell Metab ; 33(8): 1655-1670.e8, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34015269

RESUMO

How amphipathic phospholipids are shuttled between the membrane bilayer remains an essential but elusive process, particularly at the endoplasmic reticulum (ER). One prominent phospholipid shuttling process concerns the biogenesis of APOB-containing lipoproteins within the ER lumen, which may require bulk trans-bilayer movement of phospholipids from the cytoplasmic leaflet of the ER bilayer. Here, we show that TMEM41B, present in the lipoprotein export machinery, encodes a previously conceptualized ER lipid scramblase mediating trans-bilayer shuttling of bulk phospholipids. Loss of hepatic TMEM41B eliminates plasma lipids, due to complete absence of mature lipoproteins within the ER, but paradoxically also activates lipid production. Mechanistically, scramblase deficiency triggers unique ER morphological changes and unsuppressed activation of SREBPs, which potently promotes lipid synthesis despite stalled secretion. Together, this response induces full-blown nonalcoholic hepatosteatosis in the TMEM41B-deficient mice within weeks. Collectively, our data uncovered a fundamental mechanism safe-guarding ER function and integrity, dysfunction of which disrupts lipid homeostasis.


Assuntos
Retículo Endoplasmático , Fosfolipídeos , Animais , Retículo Endoplasmático/metabolismo , Homeostase , Lipogênese , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fosfolipídeos/metabolismo
15.
Nat Methods ; 17(11): 1167, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33067594

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Methods ; 17(9): 937-946, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778831

RESUMO

Genetically encoded tags for single-molecule imaging in electron microscopy (EM) are long-awaited. Here, we report an approach for directly synthesizing EM-visible gold nanoparticles (AuNPs) on cysteine-rich tags for single-molecule visualization in cells. We first uncovered an auto-nucleation suppression mechanism that allows specific synthesis of AuNPs on isolated tags. Next, we exploited this mechanism to develop approaches for single-molecule detection of proteins in prokaryotic cells and achieved an unprecedented labeling efficiency. We then expanded it to more complicated eukaryotic cells and successfully detected the proteins targeted to various organelles, including the membranes of endoplasmic reticulum (ER) and nuclear envelope, ER lumen, nuclear pores, spindle pole bodies and mitochondrial matrices. We further implemented cysteine-rich tag-antibody fusion proteins as new immuno-EM probes. Thus, our approaches should allow biologists to address a wide range of biological questions at the single-molecule level in cellular ultrastructural contexts.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica/métodos , Sistema Livre de Células , Células HeLa , Humanos , Microscopia de Fluorescência , Schizosaccharomyces , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Mol Cell ; 79(6): 963-977.e3, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32735772

RESUMO

Autophagic degradation of the endoplasmic reticulum (ER-phagy) is triggered by ER stress in diverse organisms. However, molecular mechanisms governing ER stress-induced ER-phagy remain insufficiently understood. Here we report that ER stress-induced ER-phagy in the fission yeast Schizosaccharomyces pombe requires Epr1, a soluble Atg8-interacting ER-phagy receptor. Epr1 localizes to the ER through interacting with integral ER membrane proteins VAPs. Bridging an Atg8-VAP association is the main ER-phagy role of Epr1, as it can be bypassed by an artificial Atg8-VAP tether. VAPs contribute to ER-phagy not only by tethering Atg8 to the ER membrane, but also by maintaining the ER-plasma membrane contact. Epr1 is upregulated during ER stress by the unfolded protein response (UPR) regulator Ire1. Loss of Epr1 reduces survival against ER stress. Conversely, increasing Epr1 expression suppresses the ER-phagy defect and ER stress sensitivity of cells lacking Ire1. Our findings expand and deepen the molecular understanding of ER-phagy.


Assuntos
Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Proteínas R-SNARE/genética , Autofagossomos/metabolismo , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica/genética , Proteólise , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Resposta a Proteínas não Dobradas/genética
18.
J Cell Physiol ; 235(9): 6058-6072, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32020604

RESUMO

Nowadays, abnormal loss of serine proteases appears very frequently in male patients with unexplained sterility. In fact, many testis-specific serine proteases, the largest family among the four protease families implicated in murine spermatogenesis, are indispensable for reproduction. In the present study, we demonstrate that the previously uncharacterized testis-specific serine protease TRYX5 (1700074P13Rik) is required for male fertility in mice. Tryx5-/- male mice are sterile, yet they have normal spermatogenesis and normal sperm parameters. In vivo fertilization experiments showed that the fertilization rate of Tryx5-/- sperm was almost zero. Sperm counting and analysis of paraffin sections of oviducts revealed that Tryx5-/- sperm were unable to migrate into the oviduct, which is likely the cause of the observed infertility of the Tryx5-/- male mice. Importantly, we also found that there was almost no mature ADAM3 present in Tryx5-/- sperm and almost no ADAM3 precursor in Tryx5-/- elongated spermatids of S13-16 stage, even though testes of Tryx5-/- and wild type mice had the same amount of the total precursor ADAM3. Collectively, our results demonstrate that Tryx5 is essential for male fertility in mice and suggest that TRYX5 functions in the stability or localization of ADAM3 precursor in elongated spermatids S13-16 stage, thereby regulating the ability of sperm to migrate from the uterus into the ampulla of the oviduct, the site of fertilization.


Assuntos
Fertilidade/genética , Infertilidade Masculina/genética , Proteínas Serina-Treonina Quinases/genética , Espermatogênese/genética , Animais , Tubas Uterinas/metabolismo , Feminino , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Oviductos/citologia , Oviductos/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
19.
Autophagy ; 16(11): 2036-2051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31941401

RESUMO

Macroautophagy (autophagy) is driven by the coordinated actions of core autophagy-related (Atg) proteins. Atg8, the core Atg protein generally considered acting most downstream, has recently been shown to interact with other core Atg proteins via their Atg8-family-interacting motifs (AIMs). However, the extent, functional consequence, and evolutionary conservation of such interactions remain inadequately understood. Here, we show that, in the fission yeast Schizosaccharomyces pombe, Atg38, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex I, interacts with Atg8 via an AIM, which is highly conserved in Atg38 proteins of fission yeast species, but not conserved in Atg38 proteins of other species. This interaction recruits Atg38 to Atg8 on the phagophore assembly site (PAS) and consequently enhances PAS accumulation of the PtdIns3K complex I and Atg proteins acting downstream of the PtdIns3K complex I, including Atg8. The disruption of the Atg38-Atg8 interaction leads to the reduction of autophagosome size and autophagic flux. Remarkably, the loss of this interaction can be compensated by an artificial Atg14-Atg8 interaction. Our findings demonstrate that the Atg38-Atg8 interaction in fission yeast establishes a positive feedback loop between Atg8 and the PtdIns3K complex I to promote efficient autophagosome formation, underscore the prevalence and diversity of AIM-mediated connections within the autophagic machinery, and reveal unforeseen flexibility of such connections. Abbreviations: AIM: Atg8-family-interacting motif; AP-MS: affinity purification coupled with mass spectrometry; Atg: autophagy-related; FLIP: fluorescence loss in photobleaching; PAS: phagophore assembly site; PB: piggyBac; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Fagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Leveduras
20.
Mol Cell ; 75(6): 1103-1116.e9, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31420216

RESUMO

The mitochondrial pathway of apoptosis is controlled by the ratio of anti- and pro-apoptotic members of the Bcl-2 family of proteins. The molecular events underlying how a given physiological stimulus changes this ratio to trigger apoptosis remains unclear. We report here that human 17-ß-estradiol (E2) and its related steroid hormones induce apoptosis by binding directly to phosphodiesterase 3A, which in turn recruits and stabilizes an otherwise fast-turnover protein Schlafen 12 (SLFN12). The elevated SLFN12 binds to ribosomes to exclude the recruitment of signal recognition particles (SRPs), thereby blocking the continuous protein translation occurring on the endoplasmic reticulum of E2-treated cells. These proteins include Bcl-2 and Mcl-1, whose ensuing decrease triggers apoptosis. The SLFN12 protein and an apoptosis activation marker were co-localized in syncytiotrophoblast of human placentas, where levels of estrogen-related hormones are high, and dynamic cell turnover by apoptosis is critical for successful implantation and placenta development.


Assuntos
Apoptose/efeitos dos fármacos , Estradiol/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Trofoblastos/metabolismo , Adulto , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Feminino , Células HeLa , Humanos , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...