Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2419, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499524

RESUMO

Computationally hard combinatorial optimization problems (COPs) are ubiquitous in many applications. Various digital annealers, dynamical Ising machines, and quantum/photonic systems have been developed for solving COPs, but they still suffer from the memory access issue, scalability, restricted applicability to certain types of COPs, and VLSI-incompatibility, respectively. Here we report a ferroelectric field effect transistor (FeFET) based compute-in-memory (CiM) annealer for solving larger-scale COPs efficiently. Our CiM annealer converts COPs into quadratic unconstrained binary optimization (QUBO) formulations, and uniquely accelerates in-situ the core vector-matrix-vector (VMV) multiplication operations of QUBO formulations in a single step. Specifically, the three-terminal FeFET structure allows for lossless compression of the stored QUBO matrix, achieving a remarkably 75% chip size saving when solving Max-Cut problems. A multi-epoch simulated annealing (MESA) algorithm is proposed for efficient annealing, achieving up to 27% better solution and ~ 2X speedup than conventional simulated annealing. Experimental validation is performed using the first integrated FeFET chip on 28nm HKMG CMOS technology, indicating great promise of FeFET CiM array in solving general COPs.

2.
ACS Appl Mater Interfaces ; 15(47): 54602-54610, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962420

RESUMO

Single-port ferroelectric FET (FeFET) that performs write and read operations on the same electrical gate prevents its wide application in tunable analog electronics and suffers from read disturb, especially in the high-threshold voltage (VTH) state as the retention energy barrier is reduced by the applied read bias. To address both issues, we propose to adopt a read disturb-free dual-port FeFET where the write is performed on the gate featuring a ferroelectric layer and the read is done on a separate gate featuring a nonferroelectric dielectric. Combining the unique structure and the separate read gate, read disturb is eliminated as the applied field is aligned with polarization in the high-VTH state, thus improving its stability, while it is screened by the channel inversion charge and exerts no negative impact on the low-VTH state stability. Comprehensive theoretical and experimental validation has been performed on fully depleted silicon-on-insulator (FDSOI) FeFETs integrated on a 22 nm platform, which intrinsically has dual ports with its buried oxide layer acting as the nonferroelectric dielectric. Novel applications that can exploit the proposed dual-port FeFET are proposed and experimentally demonstrated for the first time, including FPGA that harnesses its read disturb-free feature and tunable analog electronics (e.g., frequency tunable ring oscillator in this work) leveraging the separated write and read paths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...