Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2219630120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716379

RESUMO

Endothelial progenitor cells (EPCs) play an important role in vascular repair and re-endothelialization after vessel injury. EPCs in blood vessels are subjected to cyclic stretch (CS) due to the pulsatile pressure, but the role of CS in metabolic reprogramming of EPC, particularly its vascular homing and repair, is largely unknown. In the current study, physiological CS applied to EPCs at a magnitude of 10% and a frequency of 1 Hz significantly promoted their vascular adhesion and endothelial differentiation. CS enhanced mitochondrial elongation and oxidative phosphorylation (OXPHOS), as well as adenosine triphosphate production. Metabolomic study and Ultra-high performance liquid chromatography-mass spectrometry assay revealed that CS significantly decreased the content of long-chain fatty acids (LCFAs) and markedly induced long-chain fatty acyl-CoA synthetase 1 (Acsl1), which in turn facilitated the catabolism of LCFAs in mitochondria via fatty acid ß-oxidation and OXPHOS. In a rat carotid artery injury model, transplantation of EPCs overexpressing Acsl1 enhanced the adhesion and re-endothelialization of EPCs in vivo. MRI and vascular morphology staining showed that Acsl1 overexpression in EPCs improved vascular repair and inhibited vascular stenosis. This study reveals a mechanotransduction mechanism by which physiological CS enhances endothelial repair via EPC patency.


Assuntos
Células Progenitoras Endoteliais , Ratos , Animais , Mecanotransdução Celular , Diferenciação Celular , Mitocôndrias/metabolismo , Ácidos Graxos/metabolismo
2.
Theranostics ; 12(11): 4851-4865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836818

RESUMO

Rationale: Neointimal hyperplasia caused by dedifferentiation and proliferation of venous smooth muscle cells (SMCs) is the major challenge for restenosis after coronary artery bypass graft. Herein, we investigated the role of Lamtor1 in neointimal formation and the regulatory mechanism of non-coding RNA underlying this process. Methods: Using a "cuff" model, veins were grafted into arterial system and Lamtor1 expression which was correlated with the activation of mTORC1 signaling and dedifferentiation of SMCs, were measured by Western blot. Whole transcriptome deep sequencing (RNA-seq) of the grafted veins combined with bioinformatic analysis identified highly conserved circSlc8a1 and its interaction with miR-20a-5p, which may target Lamtor1. CircSlc8a1 was biochemically characterized by Sanger sequencing and resistant to RNase R digestion. The cytoplasmic location of circSlc8a1 was shown by fluorescence in situ hybridization (FISH). RNA pull-down, luciferase assays and RNA immunoprecipitation (RIP) with Ago2 assays were used to identify the interaction circSlc8a1 with miR-20a-5p. Furthermore, arterial mechanical stretch (10% elongation) was applied in vitro. Results:In vivo, Lamtor1 was significantly enhanced in grafted vein and activated mTORC1 signaling to promote dedifferentiation of SMCs. Arterial mechanical stretch (10% elongation) induced circSlc8a1 expression and positively regulated Lamtor1, activated mTORC1 and promoted SMC dedifferentiation and proliferation. Local injection of circSlc8a1 siRNA or SMC-specific Lamtor1 knockout mice prevented neointimal hyperplasia in vein grafts in vivo. Conclusions: Our study reveals a novel mechanobiological mechanism underlying the dedifferentiation and proliferation of venous SMCs in neointimal hyperplasia. CircSlc81/miR-20a-5p/Lamtor1 axis induced by arterial cyclic stretch may be a potential clinical target that attenuates neointimal hyperplasia in grafted vessels.


Assuntos
MicroRNAs , Neointima , Animais , Proliferação de Células/genética , Hiperplasia , Hibridização in Situ Fluorescente , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno
3.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297486

RESUMO

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Assuntos
Lesões das Artérias Carótidas , Músculo Liso Vascular , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Plaquetas/metabolismo , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/complicações , Neointima/metabolismo , Neointima/patologia
4.
Front Cell Dev Biol ; 9: 744320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604241

RESUMO

Phenotypic switch of vascular smooth muscle cells (VSMCs) is important in vascular remodeling which causes hyperplasia and restenosis after intimal injury. Platelets are activated at injured intima and secrete platelet-derived microvesicles (PMVs). Herein, we demonstrated the role of PMVs in VSMC phenotypic switch and the potential underlying mechanisms. In vivo, platelets were locally adhered and activated at intimal injury site, while Lamtor1 was promoted and VSMCs were dedifferentiated. PMVs, collected from collagen-activated platelets in vitro which mimicked collagen exposure during intimal injury, promoted VSMC dedifferentiation, induced Lamtor1 expression, and activated mTORC1 signaling, reflected by the phosphorylation of two downstream targets, i.e., S6K and 4E-BP1. Knockdown of Lamtor1 with small interfering RNA attenuated these processes induced by PMVs. Based on the previously published proteomic data, Ingenuity Pathway Analysis revealed that Src may participate in regulating effects of PMVs. Src inhibitor significantly reversed the effects of PMVs on VSMC dedifferentiation, Lamtor1 expression and mTORC1 activation. Furthermore, in SMC-specific Lamtor1 knockout mice, intimal hyperplasia was markedly attenuated after intimal injury compared with the wild type. Our data suggested that PMVs secreted by activated platelets promoted VSMC dedifferentiation via Src/Lamtor1/mTORC1 signaling pathway. Lamtor1 may be a potential therapeutic target for intimal hyperplasia after injury.

5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001623

RESUMO

Vascular endothelial cells (ECs) sense and respond to hemodynamic forces such as pulsatile shear stress (PS) and oscillatory shear stress (OS). Among the metabolic pathways, glycolysis is differentially regulated by atheroprone OS and atheroprotective PS. Studying the molecular mechanisms by which PS suppresses glycolytic flux at the epigenetic, transcriptomic, and kinomic levels, we have demonstrated that glucokinase regulatory protein (GCKR) was markedly induced by PS in vitro and in vivo, although PS down-regulates other glycolysis enzymes such as hexokinase (HK1). Using next-generation sequencing data, we identified the binding of PS-induced Krüppel-like factor 4 (KLF4), which functions as a pioneer transcription factor, binding to the GCKR promoter to change the chromatin structure for transactivation of GCKR. At the posttranslational level, PS-activated AMP-activated protein kinase (AMPK) phosphorylates GCKR at Ser-481, thereby enhancing the interaction between GCKR and HK1 in ECs. In vivo, the level of phosphorylated GCKR Ser-481 and the interaction between GCKR and HK1 were increased in the thoracic aorta of wild-type AMPKα2+/+ mice in comparison with littermates with EC ablation of AMPKα2 (AMPKα2-/-). In addition, the level of GCKR was elevated in the aortas of mice with a high level of voluntary wheel running. The underlying mechanisms for the PS induction of GCKR involve regulation at the epigenetic level by KLF4 and at the posttranslational level by AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Aorta Torácica/metabolismo , Epigênese Genética , Glicólise/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta Torácica/citologia , Fenômenos Biomecânicos , Hexoquinase/genética , Hexoquinase/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Reologia , Transcriptoma
6.
Genes (Basel) ; 12(3)2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799408

RESUMO

The movement of abnormal vascular smooth muscle cells (VSMCs) contributes to intimal hyperplasia in vein graft disease. Circular RNAs (circRNAs) are single stranded RNAs with 3' and 5' ends covalently joined together. They have been shown to regulate cell function in many diseases. NOVA1 is considered to be a brain-specific splicing factor that plays an important role in the nervous system and cancer. The role of NOVA1 in VSMCs remains unclear. In the present study, transcriptome sequencing was used to identify differentially expressed circRNAs in the rat vein graft model. A novel circRNA, circUVRAG, was decreased in the grafted vein and stably located in the cytoplasm. Knockdown of circUVRAG suppressed VSMC adhesion and migration. In addition, we demonstrated that the alternative splicing factor NOVA1 co-located with UVRAG pre-mRNA in the nucleus and modulated the production of circUVRAG. These new discoveries may serve as a potential means to treat intimal hyperplasia after vein grafts.


Assuntos
Processamento Alternativo , Movimento Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Adesão Celular , Masculino , Antígeno Neuro-Oncológico Ventral , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley
7.
Front Cell Dev Biol ; 9: 641763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738288

RESUMO

The arterial mechanical microenvironment, including stiffness, is a crucial pathophysiological feature of vascular remodeling, such as neointimal hyperplasia after carotid endarterectomy and balloon dilatation surgeries. In this study, we examined changes in neointimal stiffness in a Sprague-Dawley rat carotid artery intimal injury model and revealed that extracellular matrix (ECM) secretion and vascular stiffness were increased. Once the endothelial layer is damaged in vivo, activated platelets adhere to the intima and may secrete platelet-derived extracellular vesicles (pEVs) and communicate with vascular smooth muscle cells (VSMCs). In vitro, pEVs stimulated VSMCs to promote collagen secretion and cell adhesion. MRNA sequencing analysis of a carotid artery intimal injury model showed that ECM factors, including col8a1, col8a2, col12a1, and elastin, were upregulated. Subsequently, ingenuity pathway analysis (IPA) was used to examine the possible signaling pathways involved in the formation of ECM, of which the Akt pathway played a central role. In vitro, pEVs activated Akt signaling through the PIP3 pathway and induced the production of Col8a1. MicroRNA (miR) sequencing of pEVs released from activated platelets revealed that 14 of the top 30 miRs in pEVs targeted PTEN, which could promote the activation of the Akt pathway. Further research showed that the most abundant miR targeting PTEN was miR-92a-3p, which promoted Col8a1 expression. Interestingly, knockdown of Col8a1 expression in vivo abrogated the increase in carotid artery stiffness and simultaneously increased the degree of neointimal hyperplasia. Our results revealed that pEVs may deliver miR-92a-3p to VSMCs to induce the production and secretion of Col8a1 via the PTEN/PIP3/Akt pathway, subsequently increasing vascular stiffness. Therefore, pEVs and key molecules may be potential therapeutic targets for treating neointimal hyperplasia.

8.
Front Cell Dev Biol ; 8: 606989, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363166

RESUMO

Endothelial progenitor cells (EPCs) play a vital role in endothelial repair following vascular injury by maintaining the integrity of endothelium. As EPCs home to endothelial injury sites, they may communicate with exposed vascular smooth muscle cells (VSMCs), which are subjected to cyclic stretch generated by blood flow. In this study, the synergistic effect of cyclic stretch and communication with neighboring VSMCs on EPC function during vascular repair was investigated. In vivo study revealed that EPCs adhered to the injury site and were contacted to VSMCs in the Sprague-Dawley (SD) rat carotid artery injury model. In vitro, EPCs were cocultured with VSMCs, which were exposed to cyclic stretch at a magnitude of 5% (which mimics physiological stretch) and a constant frequency of 1.25 Hz for 12 h. The results indicated that stretched VSMCs modulated EPC differentiation into mature endothelial cells (ECs) and promoted angiogenesis. Meanwhile, cyclic stretch upregulated the mRNA expression and secretion level of connective tissue growth factor (CTGF) in VSMCs. Recombinant CTGF (r-CTGF) treatment promoted endothelial differentiation of EPCs and angiogenesis, and increased their protein levels of FZD8 and ß-catenin. CTGF knockdown in VSMCs inhibited cyclic stretch-induced EPC differentiation into ECs and attenuated EPC tube formation via modulation of the FZD8/ß-catenin signaling pathway. FZD8 knockdown repressed endothelial differentiation of EPCs and their angiogenic activity. Wnt signaling inhibitor decreased the endothelial differentiation and angiogenetic ability of EPCs cocultured with stretched VSMCs. Consistently, an in vivo Matrigel plug assay demonstrated that r-CTGF-treated EPCs exhibited enhanced angiogenesis; similarly, stretched VSMCs also induced cocultured EPC differentiation toward ECs. In a rat vascular injury model, r-CTGF improved EPC reendothelialization capacity. The present results indicate that cyclic stretch induces VSMC-derived CTGF secretion, which, in turn, activates FZD8 and ß-catenin to promote both differentiation of cocultured EPCs into the EC lineage and angiogenesis, suggesting that CTGF acts as a key intercellular mediator and a potential therapeutic target for vascular repair.

9.
FASEB J ; 34(10): 13586-13596, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856783

RESUMO

Endothelial microparticles (EMPs) are involved in various cardiovascular pathologies and play remarkable roles in communication between endothelial cells (ECs), which are constantly exposed to mechanical cyclic stretch (CS) following blood pressure. However, the roles of EMPs induced by CS in EC homeostasis are still unclear. Both fluorescence resonance energy transfer (FRET) and western blotting revealed the activation of Src in ECs was significantly increased by 5% CS-induced EMPs. Furthermore, proteomic analysis revealed that the contents were obvious different in the EMPs between 5%- and 15%-group. Based on the bioinformatic analysis, CD151 on EMPs was predicted to activate Src, which was further confirmed by both FRET and western blotting. Moreover, the expression of CD151 on EMPs was significantly increased by 5% CS and involved in the binding of EMPs to ECs. EC apoptosis, which was significantly decreased by 5% CS-derived EMPs, showed obvious increase after pretreatment with Src inhibitor in target ECs. Our present research suggests that mechanical stretch changes the components of EMPs, which in turn modulates EC apoptosis by Src activation. CD151 expressed on CS-induced EMPs may play important roles in EC communication and homeostasis.


Assuntos
Apoptose , Micropartículas Derivadas de Células/fisiologia , Células Endoteliais , Endotélio Vascular , Quinases da Família src/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ratos , Estresse Mecânico , Tetraspanina 24/metabolismo
10.
FEBS J ; 287(23): 5196-5217, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32167224

RESUMO

Intimal injury is an early stage of several cardiovascular diseases. Endothelial progenitor cells (EPCs) play a significant role in endothelial repair following vascular injury. Once the intima is damaged, EPCs are mobilized from the bone marrow to the injury site. Meanwhile, the injury to the intimal surface triggers platelet degranulation, aggregation, and adhesion to the damaged endothelium, and exposed collagen stimulates platelet to secrete platelet-derived microvesicles (PMVs). However, the role of PMVs in EPC function during this process remains unknown. In an in vivo study, EPCs and platelets were found to adhere to the injury site in Sprague-Dawley (SD) rat vascular injury model. In vitro, collagen stimulation induced the release of PMVs, and collagen-activated PMVs (ac.PMVs) significantly promoted EPC proliferation. Transforming growth factor-ß1 (TGF-ß1) content was increased in ac.PMVs. Activated PMVs significantly upregulated Smad3 phosphorylation in EPCs and increased Smad3 nuclear translocation from the cytoplasm. TGF-ß1 knockdown ac.PMVs downregulated EPC proliferation. Recombinant TGF-ß1 enhanced EPC proliferation. The TGF-ß1 inhibitor SB431542 significantly repressed the intracellular signal triggered by ac.PMVs. Furthermore, the Smad3-specific phosphorylation inhibitor SIS3 effectively reversed the cell proliferation induced by ac.PMVs. Smad3 translocated to the nucleus and enhanced EPC proliferation via its downstream genes tenascin C (TNC), CDKN1A, and CDKN2A. r-TGF-ß1 promoted reendothelialization and EPC proliferation in vivo. Our data demonstrate that activated PMVs deliver TGF-ß1 from collagen-activated platelets to EPCs, which in turn activates Smad3 phosphorylation and regulates TNC, CDKN1A, and CDKN2A expression to promote EPC proliferation, suggesting that PMVs act as a key transporter and a potential therapeutic target for vascular injury.


Assuntos
Plaquetas/metabolismo , Lesões das Artérias Carótidas/terapia , Proliferação de Células , Micropartículas Derivadas de Células/transplante , Células Progenitoras Endoteliais/citologia , Fator de Crescimento Transformador beta1/metabolismo , Túnica Íntima/metabolismo , Animais , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Espessura Intima-Media Carotídea , Diferenciação Celular , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Túnica Íntima/lesões
11.
J Cell Physiol ; 235(10): 6831-6842, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31990052

RESUMO

Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are the pathological basis of hyperplasia during vein graft disease. It remains unknown if circular RNAs (circRNAs) are involved in vein graft disease. In the present study, a rat vein graft model was constructed by the "cuff" technique, and whole transcriptome deep sequencing was applied to identify differential circRNAs in the grafted vein compared to the control. We identified a novel circRNA, named circTET3, whose structure was verified by Sanger sequencing and RNase R digestion. CircTET3 was increased in the grafted vein and stably located in the cytoplasm as detected by fluorescence in situ hybridization. Knockdown of circTET3 suppressed VSMC migration by acting as an endogenous miR-351-5p sponge detected by RNA pull-down and dual-luciferase reporter assays. PTPN1 was the targeted gene due to the competitive binding of circTET3 to miR-351-5p. This regulatory pathway may serve as a potential therapeutic avenue against intimal hyperplasia in vein graft disease.


Assuntos
Movimento Celular/genética , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , RNA Circular/genética , Animais , Células Cultivadas , Citoplasma/genética , Modelos Animais de Doenças , Hiperplasia/genética , Hiperplasia/patologia , Masculino , Disfunção Primária do Enxerto/genética , Disfunção Primária do Enxerto/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Ratos , Ratos Sprague-Dawley , Transcriptoma/genética
12.
J Biomech Eng ; 142(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513704

RESUMO

Mechanical stimuli play an important role in vein graft restenosis and the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are pathological processes contributing to this disorder. Here, based on previous high-throughput sequencing data from vein grafts, miR-29a-3p and its target, the role of Ten-eleven translocation methylcytosinedioxygenase 1 (TET1) in phenotypic transformation of VSMCs induced by mechanical stretch was investigated. Vein grafts were generated by using the "cuff" technique in rats. Deep transcriptome sequencing revealed that the expression of TET1 was significantly decreased, a process confirmed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis. MicroRNA-seq showed that miR-29a-3p was significantly up-regulated, targeting TET1 as predicted by Targetscan. Bioinformatics analysis indicated that the co-expressed genes with TET1 might modulate VSMC contraction. Venous VSMCs exposed to 10%-1.25 Hz cyclic stretch by using the Flexcell system were used to simulate arterial mechanical conditions in vitro. RT-qPCR revealed that mechanical stretch increased the expression of miR-29a-3p at 3 h. Western blot analysis showed that TET1 was significantly decreased, switching contractile VSMCs to cells with a synthetic phenotype. miR-29a-3p mimics (MI) and inhibitor (IN) transfection confirmed the negative impact of miR-29a-3p on TET1. Taken together, results from this investigation demonstrate that mechanical stretch modulates venous VSMC phenotypic transformation via the mediation of the miR-29a-3p/TET1 signaling pathway. miR-29a-3p may have potential clinical implications in the pathogenesis of remodeling of vein graft restenosis.


Assuntos
Miócitos de Músculo Liso , Animais , Proliferação de Células , MicroRNAs , Músculo Liso Vascular , Ratos
13.
Exp Cell Res ; 386(1): 111710, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693873

RESUMO

Physiological cyclic stretch (CS), caused by artery deformation following blood pressure, plays important roles in the homeostasis of endothelial cells (ECs). Here, we detected the effect of physiological CS on endothelial microvesicles (EMVs) and their roles in leukocyte recruitment to ECs, which is a crucial event in EC inflammation. The results showed compared with the static treatment, pretreatment of 5%-CS-derived EMVs with ECs significantly decreased the adherence level of leukocytes. Comparative proteomic analysis revealed 373 proteins differentially expressed between static-derived and 5%-CS-derived EMVs, in which 314 proteins were uniquely identified in static-derived EMVs, 34 proteins uniquely in 5%-CS-derived EMVs, and 25 proteins showed obvious differences. Based on the proteomic data, Ingenuity Pathways Analysis predicted intercellular adhesion molecule 1 (ICAM1) in EMVs might be the potential molecule involved in EC-leukocyte adhesion. Western blot and flow cytometry analyses confirmed the significant decrease of ICAM1 in 5%-CS-derived EMVs, which subsequently inhibited the phosphorylation of VE-cadherin at Tyr731 in target ECs. Moreover, leukocyte adhesion was obviously decreased after pretreatment with ICAM1 neutralizing antibody. Our present research suggested that physiological stretch changes the components of EMVs, which in turn inhibits leukocyte adhesion. ICAM1 expressed on CS-induced EMVs may play an important role in maintaining EC homeostasis.


Assuntos
Adesão Celular , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/fisiologia , Animais , Caderinas/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Leucócitos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
14.
J Cell Biochem ; 120(4): 5256-5267, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320897

RESUMO

Endothelial progenitor cells (EPCs) are vital to the recovery of endothelial function and maintenance of vascular homeostasis. EPCs mobilize to sites of vessel injury and differentiate into mature endothelial cells (ECs). Locally mobilized EPCs are exposed to cyclic stretch caused by blood flow, which is important for EPC differentiation. MicroRNAs (miRNAs) have emerged as key regulators of several cellular processes. However, the role of miRNAs in cyclic stretch-induced EPC differentiation remains unclear. Here, we investigate the effects of microRNA-129-1-3p (miR-129-1-3p) and its novel target Runt-related transcription factor 2 (Runx2) on EPC differentiation induced by cyclic stretch. Bone marrow-derived EPCs were exposed to cyclic stretch with a magnitude of 5% (which mimics physiological mechanical stress) at a constant frequency of 1.25 Hz for 24 hours. The results from a miRNA array revealed that cyclic stretch significantly decreased miR-129-1-3p expression. Furthermore, we found that downregulation of miR-129-1-3p during cyclic stretch-induced EPC differentiation toward ECs. Meanwhile, expression of Runx2, a putative target gene of miR-129-1-3p, was increased as a result of cyclic stretch. A 3'UTR reporter assay validated Runx2 as a direct target of miR-129-1-3p. Furthermore, small interfering RNA (siRNA)-mediated knockdown of Runx2 inhibited EPC differentiation into ECs and attenuated EPC tube formation via modulation of vascular endothelial growth factor (VEGF) secretion from EPCs in vitro. Our findings demonstrated that cyclic stretch suppresses miR-129-1-3p expression, which in turn activates Runx2 and VEGF to promote endothelial differentiation of EPCs and angiogenesis. Therefore, targeting miR-129-1-3p and Runx2 may be a potential therapeutic strategy for treating vessel injury.


Assuntos
Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/lesões , Vasos Sanguíneos/metabolismo , Movimento Celular/genética , Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Ratos , Estresse Mecânico , Transfecção
15.
FASEB J ; 33(3): 3784-3794, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496701

RESUMO

Dendritic cells (DCs) have crucial roles in immune-related diseases. However, it is difficult to explore DCs because of their rareness and heterogeneity. Although previous studies had been performed to detect the phenotypic characteristics of DC populations, the functional diversity has been ignored. Using a combination of flow cytometry, single-cell quantitative PCR, and bioinformatic analysis, we depicted the DC panorama with not only phenotypic but also functional markers. Functional classification of DCs in mouse lymphoid tissue (spleen) and nonlymphoid tissue (liver) was performed. The results revealed that expression of macrophage scavenger receptor 1 ( MSR1) and C-C motif chemokine receptors ( CCR) 1, CCR2, and CCR4 were elevated in liver DCs, suggesting increased lipid uptake and migration abilities. The enriched expression of costimulatory molecule CD80, TLR9, and TLR adaptor MYD88 in spleen DCs indicated a more-mature phenotype, enhanced pathogen recognition, and T-cell stimulation abilities. Furthermore, we compared DCs in the atherosclerotic mouse models with healthy controls. In addition to the quantitative increase in DCs in the liver and spleen of the apolipoprotein E-knockout ( ApoE-/-) mice, the functional expression patterns of the DCs also changed at the single-cell level. These results promote our understanding of the participation of DCs in inflammatory diseases and have potential applications in DC clinical assessment.-Shi, Q., Zhuang, F., Liu, J.-T., Li, N., Chen, Y.-X., Su, X.-B., Yao, A.-H., Yao, Q.-P., Han, Y., Li, S.-S., Qi, Y.-X., Jiang, Z.-L. Single-cell analyses reveal functional classification of dendritic cells and their potential roles in inflammatory disease.


Assuntos
Células Dendríticas/patologia , Inflamação/patologia , Animais , Células Dendríticas/metabolismo , Citometria de Fluxo/métodos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR1/metabolismo , Receptores Depuradores Classe A/metabolismo , Análise de Célula Única/métodos , Baço/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
16.
Adv Exp Med Biol ; 1097: 69-82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30315540

RESUMO

Vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) are constantly exposed to hemodynamic forces in vivo, including flow shear stress and cyclic stretch caused by the blood flow. Numerous researches revealed that during various cardiovascular diseases such as atherosclerosis, hypertension, and vein graft, abnormal (pathological) mechanical forces play crucial roles in the dysfunction of ECs and VSMCs, which is the fundamental process during both vascular homeostasis and remodeling. Hemodynamic forces trigger several membrane molecules and structures, such as integrin, ion channel, primary cilia, etc., and induce the cascade reaction processes through complicated cellular signaling networks. Recent researches suggest that nuclear envelope proteins act as the functional homology of molecules on the membrane, are important mechanosensitive molecules which modulate chromatin location and gene transcription, and subsequently regulate cellular functions. However, the studies on the roles of nucleus in the mechanotransduction process are still at the beginning. Here, based on the recent researches, we focused on the nuclear envelope proteins and discussed the roles of pathological hemodynamic forces in vascular remodeling. It may provide new insight into understanding the molecular mechanism of vascular physiological homeostasis and pathophysiological remodeling and may help to develop hemodynamic-based strategies for the prevention and management of vascular diseases.


Assuntos
Células Endoteliais/citologia , Mecanotransdução Celular , Miócitos de Músculo Liso/citologia , Proteínas Nucleares , Remodelação Vascular , Humanos , Membrana Nuclear , Estresse Mecânico
17.
J Biomech ; 60: 124-133, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28693818

RESUMO

Blood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4weeks. The wall remodeling in these twisted arteries was examined using histology, immunohistochemistry and fluorescent microscopy. Our data showed that arteries remodeled under twisting in a time-dependent manner during the 4weeks post-surgery. Cell proliferation, MMP-2 and MMP-9 expressions, medial wall thickness and lumen diameter increased while collagen to elastin ratio decreased. The size and number of internal elastic lamina fenestrae increased with elongated shapes, while the endothelial cells elongated and aligned towards the blood flow direction gradually. These results demonstrated that sustained axial twisting results in artery remodeling in vivo. The rat carotid artery twisting model is an effective in vivo model for studying arterial wall remodeling under long-term torsion. These results enrich our understanding of vascular biology and arterial wall remodeling under mechanical stresses.


Assuntos
Artérias Carótidas/fisiopatologia , Modelos Biológicos , Remodelação Vascular , Animais , Colágeno/metabolismo , Elastina/metabolismo , Células Endoteliais/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Estresse Mecânico
18.
J Hypertens ; 35(6): 1195-1203, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28319593

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are being discovered in multiple diseases at a rapid pace. However, the contribution of lncRNAs to hypertension remains largely unknown. In hypertension, the vascular walls are exposed to abnormal mechanical cyclic strain, which leads to vascular remodelling. Here, we investigated the mechanobiological role of lncRNAs in hypertension. METHODS AND RESULTS: Differences in the lncRNAs and mRNAs between spontaneously hypertensive rats and Wistar-Kyoto rats were screened using a gene microarray. The results showed that 68 lncRNAs and 255 mRNAs were upregulated in the aorta of spontaneously hypertensive rats, whereas 167 lncRNAs and 272 mRNAs were downregulated. Expressions of the screened lncRNAs, including XR007793, were validated by real-time PCR. A coexpression network was composed, and gene function was analysed using Ingenuity Pathway Analysis. In vitro, vascular smooth muscle cells (VSMCs) were subjected to cyclic strain at a magnitude of 5 (physiological normotensive cyclic strain) or 15% (pathological hypertensive cyclic strain) by Flexcell-4000T. A total of 15% cyclic strain increased XR007793 expression. XR007793 knockdown attenuated VSMC proliferation and migration and inhibited coexpressed genes such as signal transducers and activators of transcription 2 (stat2), LIM domain only 2 (lmo2) and interferon regulatory factor 7 (irf7). CONCLUSION: The profile of lncRNAs was varied in response to hypertension, and pathological elevated cyclic strain may play crucial roles during this process. Our data revealed a novel mechanoresponsive lncRNA-XR007793, which modulates VSMC proliferation and migration, and participates in vascular remodelling during hypertension.


Assuntos
Aorta/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Músculo Liso Vascular/citologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/análise , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
19.
Cardiovasc Res ; 113(5): 488-497, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137944

RESUMO

AIMS: Mechanical factors play significant roles in neointimal hyperplasia after vein grafting, but the mechanisms are not fully understood. Here, we investigated the roles of microRNA-33 (miR-33) in neointimal hyperplasia induced by arterial mechanical stretch after vein grafting. METHODS AND RESULTS: Grafted veins were generated by the 'cuff' technique. Neointimal hyperplasia and cell proliferation was significantly increased, and miR-33 expression was decreased after 1-, 2-, and 4-week grafts. In contrast, the expression of bone morphogenetic protein 3 (BMP3), which is a putative target of miR-33, and the phosphorylation of smad2 and smad5, which are potential downstream targets of BMP3, were increased in the grafted veins. miR-33 mimics/inhibitor and dual luciferase reporter assay confirmed the interaction of miR-33 and BMP3. miR-33 mimics attenuated, while miR-33 inhibitor accelerated, proliferation of venous smooth muscle cells (SMCs). Moreover, recombinant BMP3 increased SMC proliferation and P-smad2 and P-smad5 levels, whereas BMP3-directed siRNAs had the opposite effect. Then, venous SMCs were exposed to a 10%-1.25 Hz cyclic stretch (arterial stretch) by using the FX4000 cyclic stretch loading system in vitro to mimic arterial mechanical conditions. The arterial stretch increased venous SMC proliferation and repressed miR-33 expression, but enhanced BMP3 expression and smad2 and smad5 phosphorylation. Furthermore, perivascular multi-point injection in vivo demonstrated that agomiR-33 not only attenuates BMP3 expression and smad2 and smad5 phosphorylation, but also slows neointimal formation and cell proliferation in grafted veins. These effects of agomiR-33 on grafted veins could be reversed by local injection of BMP3 lentivirus. CONCLUSION: The miR-33-BMP3-smad signalling pathway protects against venous SMC proliferation in response to the arterial stretch. miR-33 is a target that attenuates neointimal hyperplasia in grafted vessels and may have potential clinical applications.


Assuntos
Proliferação de Células , Veias Jugulares/metabolismo , Veias Jugulares/transplante , Mecanotransdução Celular , MicroRNAs/metabolismo , Neointima , Regiões 3' não Traduzidas , Animais , Antagomirs/genética , Antagomirs/metabolismo , Sítios de Ligação , Proteína Morfogenética Óssea 3/genética , Proteína Morfogenética Óssea 3/metabolismo , Células Cultivadas , Hiperplasia , Veias Jugulares/patologia , Masculino , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/transplante , Fosforilação , Interferência de RNA , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Proteína Smad5/metabolismo , Estresse Mecânico , Fatores de Tempo , Transfecção
20.
Sci Rep ; 7: 41058, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106155

RESUMO

Abnormal proliferation of endothelial cells (ECs) is important in vascular remodeling during hypertension, but the mechanisms are still unclear. In hypertensive rats caused by abdominal aortic coarctation, the expression of G-protein-coupled receptor kinase 6 (GRK6) in ECs at common carotid artery was repressed in vivo, and EC proliferation was increased. 15% cyclic stretch in vitro, which mimics the pathologically increased stretch in hypertension, repressed EC GRK6 expression via paracrine control by vascular smooth muscle cells (VSMCs). Furthermore, VSMC-derived microparticles (VSMC-MPs) were detected in the conditioned medium from VSMCs and in artery. VSMC-MPs from cells exposed to 15% cyclic stretch decreased GRK6 expression and increased EC proliferation. miR-27a was detected in VSMC-MPs and was upregulated by 15% cyclic stretch. miR-27a was transferred from VSMCs to ECs via VSMC-MPs and directly targeted on GRK6. Finally, a multi-point injection of antagomiR-27a around carotid artery decreased miR-27a expression in vivo, induced GRK6 expression, and reversed the abnormal EC proliferation. Pathologically elevated cyclic stretch increased the secretion of miR-27a, which was transferred from VSMCs to ECs via the VSMC-MPs, subsequently targeted GRK6, and induced EC proliferation. Locally decreasing miR-27a could be a novel therapeutic approach to attenuate the abnormal EC proliferation in hypertension.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Hipertensão/metabolismo , MicroRNAs/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Comunicação Parácrina , Estimulação Física , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...