Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 42(2): 358-361, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081112

RESUMO

It is found that the optimum annealing temperature is about 1000°C for the infrared emission of defect states at room temperature on black silicon (BS) prepared by using a nanosecond-pulsed laser. In addition, it is observed that the suitable annealing time is 6∼8 min at 1000°C for the emission on the BS. The crystallizing proceeding in annealing on the BS can be used to explain the above annealing effect. It is interesting that the emission band becomes intensive and broader on the BS prepared in oxygen atmosphere than that prepared in vacuum in the analysis of photoluminescence spectra, where the electronic states localized at the defects from D1 to D4 doped with oxygen play an important role in the emission with the broader band which are obviously enhanced in the room temperature.

2.
Nanoscale Res Lett ; 6(1): 59, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27502681

RESUMO

In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...