Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(4): 1676-1689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044709

RESUMO

In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Transcriptoma , Plastídeos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Genes (Basel) ; 14(12)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136966

RESUMO

Family-1 UDP-glycosyltransferases (UGTs) are the most common and functional glycosyltransferases in the plant world. UGT is closely related to plant growth and the response to abiotic stress. However, despite systematic research, our understanding of potato UGT genes is still unclear. In this study, we identified 174 potato UGT proteins based on their conserved plant secondary product glycosyltransferase (PSPG) motifs. Phylogenetic analyses were used to compare these proteins with Arabidopsis UGTs and other plant UGTs, and it was found that they could be clustered into 18 distinct groups. Patterns of intron gain/loss and intron phases within potato UGTs revealed highly conserved intron insertion events. The promoter cis-elements of these 174 UGT genes were systematically investigated. The promoter regions of these UGT genes are known to contain various classes of cis-acting compounds. These include elements that are light-responsive, phytohormone-responsive, and stress-responsive. Transcriptome data analysis established that 25, 10, 6, and 4 of these 174 UGT genes were specifically expressed in leaves, roots, stolons, and young tubers, respectively. The mannitol-treated transcriptomic data showed thirty-eight UGT genes were significantly upregulated. The quantitative real-time PCR results showed that the four genes were all responsive to osmotic stress under a 10% PEG6000 treatment. The results of our study provide a basis for clarifying the molecular mechanism of potato osmotic stress resistance and better understanding its function in the future.


Assuntos
Glicosiltransferases , Solanum tuberosum , Glicosiltransferases/genética , Filogenia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Pressão Osmótica , Genoma
3.
Plant Physiol Biochem ; 157: 316-327, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33166770

RESUMO

Chlorophyll (chl) degradation plays a vital role during green plant growth and development, including nutrient metabolism, fruit and seed maturation, and phototoxic detoxification. STAY-GREEN (SGR) is a plant-specific regulator involved in chl degradation. Previous studies showed that SlSGR1 functioned in chl degradation and lycopene accumulation during fruit ripening of tomato (Solanum lycopersicum). However, little is known about SlSGR-LIKE (SlSGRL) gene, which is a homolog of SlSGR1. We cloned the SlSGRL gene and created transgenic tomato plants overexpressing (OE) SlSGRL. Expression analysis showed that SlSGRL was up-regulated by abscisic acid (ABA). Our data showed that SlSGRL-OE lines exhibited earlier leaf yellowing than wild-type (WT) lines under ABA treatment. Yeast two-hybrid (Y2H) assay revealed that SlSGRL interacted with pheophytin pheophorbide hydrolase (SlPPH) and light-harvesting complex a2 (SlLHCa2) to promote the chl degradation. Further analysis demonstrated that ABA-INSENSITIVE5 (SlABI5) and SlABI5-LIKE regulated SlSGRL expression by directly binding to the sequence (-611 to -582) of the SlSGRL promoter that included an ABRE cis-element. We proposed that SlSGRL, which was regulated by SlABI5/SlABI5-LIKE, mainly acted in ABA-induced chl degradation via interacting with SlPPH and SlLHCa2.


Assuntos
Ácido Abscísico/farmacologia , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo
4.
Bot Stud ; 61(1): 25, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32965575

RESUMO

Chlorophyll (Chl) degradation is one of the most obvious signs of leaf senescence and fruit ripening. Stay-green (SGR) homologs that can remove magnesium from Chl a are the most important components in Chl degradation pathway in green plants. SGR homologs are not only universally involved in Chl breakdown during the senescence of green organs, but also play crucial roles in other organs during plant growth and development, such as fruit mature and nodule development. In this review, we focus on the diverse functions of SGR homologs in plant growth and development. A better understanding of SGR would be helpful for providing a theoretical basis for further illustrating the regulatory mechanism of SGR homologs.

5.
J Exp Bot ; 71(12): 3653-3663, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32189001

RESUMO

Rubisco, which consists of eight large subunits (RBCLs) and eight small subunits (RBCSs), is a major photosynthetic enzyme that is sensitive to chilling stress. However, it is largely unclear how plants maintain high Rubisco content under low temperature conditions. Here, we report that tomato WHIRLY1 (SlWHY1) positively regulates the Rubisco level under chilling stress by directly binding to the promoter region of SlRbcS1, resulting in the activation of SlRbcS1 expression. SlRbcS1-overexpressing lines had higher Rubisco contents and were more resistant to chilling stress compared with the wild type. Quantitative real-time PCR analyses showed that, among the five RbcS genes, only SlRbcS1 expression is up-regulated by chilling treatment. These results indicate that SlWHIRLY1 specifically enhances the levels of SlRbcS1 and confers tolerance to chilling stress. The amino acid sequence of SlRBCS1 shows 92.67% identity with those of another two RBCS proteins and three residues are specifically found in SlRBCS1. However, mutation of these residues to alanine in SlRBCS1 does not influence its function during cold adaptation. Thus, we conclude that high levels of Rubisco, but not the specific residues in SlRBCS1, play important roles in tolerance to chilling stress in tomato.


Assuntos
Solanum lycopersicum , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Fotossíntese , Folhas de Planta , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...