Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gastrointest Oncol ; 15(2): 630-640, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756629

RESUMO

Background: After the failure of standard first- and second-line treatments, including oxaliplatin, irinotecan, and 5-fluorouracil (5-FU) combined with targeted drugs, the currently recommended third-line regimens for metastatic colorectal cancer (mCRC) include TAS-102, regorafenib, and fruquintinib. However, these regimens have the drawbacks of mediocre efficacy, substantive side effects, and high cost. Therefore, more effective, economical regimens with fewer side effects are needed in clinical practice. In this study, we assessed the efficacy and safety of gemcitabine plus raltitrexed or S-1 as a third- or later-line treatment in comparison to those of standard third-line therapies for patients with mCRC. Methods: Patients with previous failures of at least two lines of standard therapy with oxaliplatin, 5-FU, irinotecan, or capecitabine combined with targeted drugs were included. The participants received standard third-line therapies (including TAS-102, regorafenib, and fruquintinib) or gemcitabine plus raltitrexed or S-1 until disease progression, death, or intolerable toxicity arose. Imaging follow-up was performed every 3 months during their treatment. Progression-free survival (PFS) and overall survival (OS) were recorded. Cox regression analysis was used to investigate the potential predictors of survival. Results: From April 2018 to October 2022, 60 patients with mCRC were enrolled in our study. The numbers of patients in the chemotherapy, fruquintinib, regorafenib, and TAS-102 groups were 13, 15, 17, and 15, respectively; the median OS of the four groups was 7.4, 6.1, 8.3, and 6.7 months (P=0.384), respectively; the median PFS was 4.1, 3.4, 4.4, and 2.3 months (P=0.656), respectively; the overall response rate was 7.69%, 6.67%, 0.00%, and 13.33%, respectively; and the disease control rate was 61.54%, 60.00%, 70.59%, and 60.00%, respectively. Additionally, multivariate analysis revealed that primary lesion located in the rectum was adverse independent prognostic factors for OS. A typical case is presented in this article. Conclusions: The gemcitabine plus raltitrexed or S-1 regimen is a potential regimen with tolerable adverse reactions and low cost for patients with mCRC.

2.
Front Immunol ; 14: 1086297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875062

RESUMO

The conserved protective epitopes of hemagglutinin (HA) are essential to the design of a universal influenza vaccine and new targeted therapeutic agents. Over the last 15 years, numerous broadly neutralizing antibodies (bnAbs) targeting the HA of influenza A viruses have been isolated from B lymphocytes of human donors and mouse models, and their binding epitopes identified. This work has brought new perspectives for identifying conserved protective epitopes of HA. In this review, we succinctly analyzed and summarized the antigenic epitopes and functions of more than 70 kinds of bnAb. The highly conserved protective epitopes are concentrated on five regions of HA: the hydrophobic groove, the receptor-binding site, the occluded epitope region of the HA monomers interface, the fusion peptide region, and the vestigial esterase subdomain. Our analysis clarifies the distribution of the conserved protective epitope regions on HA and provides distinct targets for the design of novel vaccines and therapeutics to combat influenza A virus infection.


Assuntos
Hemaglutininas , Vírus da Influenza A , Humanos , Animais , Camundongos , Epitopos , Domínios Proteicos , Linfócitos B , Anticorpos Amplamente Neutralizantes
3.
Health Phys ; 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223337

RESUMO

ABSTRACT: Relevant studies have confirmed that the stimulation of spleen function caused by low-dose splenic irradiation can have positive effects on tumors and other diseases. This study aimed to determine radiation-induced changes in spleen index, lymphocyte subsets, spleen cell apoptosis, and pathological features of the spleen in mice. The mouse model was established by irradiating the spleen at different doses. The mice were divided into the following groups: blank control, low-dose, low-dose fractionated irradiation, and challenge dose irradiation. The mice were sacrificed under humanitarian conditions, and spleen tissue and peripheral blood were collected. The spleen index was calculated, and flow cytometry was used to analyze spleen T lymphocyte subsets and spleen apoptosis. The pathological changes in the spleen were determined by hematoxylin and eosin (H&E) staining. The spleen index of mice in the low-dose fractionated irradiation group was significantly increased compared with that in the blank control group. The spleen indexes of the low-dose irradiation and low-dose fractionated irradiation groups were much higher than that of the challenge dose irradiation group. Compared with the blank control group, the percentage of CD3+ and CD4+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation and low-dose fractionated irradiation groups was significantly increased, whereas that from the challenge dose irradiation group was obviously decreased. CD8+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation, low-dose fractionated irradiation, and challenge dose irradiation groups were significantly lower than those in the blank control group. The apoptosis rate of the spleen in the challenge dose irradiation group was significantly higher than that in the blank control, low-dose irradiation, and low-dose fractionated irradiation groups. H&E staining analysis of the spleen showed pathological changes in the different irradiation groups compared with the blank control group. Low-dose irradiation and low-dose fractionated irradiation can change the T lymphocyte subsets in the peripheral blood and spleen of mice, which can promote immune excitation and improve immune effects.

4.
Org Lett ; 24(29): 5361-5365, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35848078

RESUMO

Herein, we report a general and practical nickel-catalyzed deaminative allenylation of amino acid derivatives with terminal alkynes. The well-designed, electron deficient, and sterically hindered amide-type NN2 pincer ligand was crucial to the success of this transformation, enabling the coupling to occur under mild conditions with high efficiency. The remarkable features of this chemistry are its good scalability, its broad substrate scope, functional group tolerance, and the efficient modification of peptides, drugs, and natural products.


Assuntos
Amidas , Níquel , Aminoácidos , Catálise , Ligantes , Níquel/química
5.
Nat Commun ; 12(1): 4904, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385455

RESUMO

Alkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl-substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synthesis, one-pot transformation, versatile late-stage derivatizations as well as the use of inexpensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals.

6.
Aging (Albany NY) ; 12(9): 7747-7760, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364525

RESUMO

SPOP, a substrate binding adaptor of E3 ubiquitin ligase Cullin3, is frequently mutated in human prostate cancer (PCa). However, whether and how SPOP is regulated at transcriptional level in PCa remain unclear. Here, we report that SPOP is down-regulated in PCa stem-like cells (CSCs) and tissues. Our study reveals that SPOP expression is repressed by TGF-ß / SMAD signaling axis in PCa CSCs. SPOP promoter contains SMAD-binding elements (SBEs), which can interact with SMAD3. Moreover, TGF-ß signaling inhibitor SB431542 promotes the SPOP expression and abrogates PCa stemness. Clinically, SPOP expression is downregulated in PCa patients, which is significantly related to a poor prognosis and lower survival rate. Thus, our findings uncover a mechanism of how SPOP expression is mediated in PCa CSCs via TGF-ß/ SMAD3 signaling.


Assuntos
Regulação para Baixo , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta/genética , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas Nucleares/biossíntese , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , RNA Neoplásico , Proteínas Repressoras/biossíntese , Fator de Crescimento Transformador beta/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-31681747

RESUMO

Background: Kidney renal clear cell carcinoma (KIRC) is the malignancy originated from the renal epithelium, with a high rate of distant metastasis. Aberrant alternative splicing (AS) of pre-mRNA are widely reported to be involved in the tumorigenesis and metastasis of multiple cancers. The aim of this study is to explore the mechanism of alternative splicing events (ASEs) underlying tumorigenesis and metastasis of KIRC. Methods: RNA-seq of 537 KIRC samples downloaded from the TCGA database and ASEs data from the TCGASpliceSeq database were used to identify ASEs in patients with KIRC. The univariate and Lasso regression analysis were used to screen the most significant overall survival-related ASEs (OS-SEs). Based on those, the OS-SEs model was proposed. The interaction network of OS-SEs and splicing factors (SFs) with absolute value of correlation coefficient value >0.750 was constructed by Pearson correlation analysis. The OS-SEs significantly related to distant metastasis and clinical stage were identified by non-parametric test, and those were also integrated into co-expression analysis with prognosis-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways identified by Gene Set Variation Analysis (GSVA). ASEs with significance were selected for multiple online database validation. Results: A total of prognostic 6,081 overall survival-related ASEs (OS-SEs) were identified by univariate Cox regression analysis and a prediction model was constructed based on 5 OS-SEs screened by Lasso regression with the Area Under Curve of 0.788. Its risk score was also illustrated to be an independent predictor, which the good reliability of the model. Among 390 identified candidate SFs, DExD-Box Helicase 39B (DDX39B) was significantly correlated with OS and metastasis. After external database validation, Retained Intron of Ras Homolog Family Member T2 (RHOT2) and T-Cell Immune Regulator 1 (TCIRG1) were identified. In the co-expression analysis, overlapped co-expression signal pathways for RHOT2 and TCIRG1 were sphingolipid metabolism and N-glycan biosynthesis. Conclusions: Based on the results of comprehensive bioinformatic analysis, we proposed that aberrant DDX39B regulated RHOT2-32938-RI and TCIRG1-17288-RI might be associated with the tumorigenesis, metastasis, and poor prognosis of KIRC via sphingolipid metabolism or N-glycan biosynthesis pathway.

8.
Cancer Cell ; 34(1): 103-118.e9, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30008322

RESUMO

YAP, a key effector of Hippo pathway, is activated by its translocation from cytoplasm to nucleus to regulate gene expression and promote tumorigenesis. Although the mechanism by which YAP is suppressed in cytoplasm has been well-studied, how the activated YAP is sequestered in the nucleus remains unknown. Here, we demonstrate that YAP is a nucleocytoplasmic shuttling protein and its nuclear export is controlled by SET1A-mediated mono-methylation of YAP at K342, which disrupts the binding of YAP to CRM1. YAP mimetic methylation knockin mice are more susceptible to colorectal tumorigenesis. Clinically, YAP K342 methylation is reversely correlated with cancer survival. Collectively, our study identifies SET1A-mediated mono-methylation at K342 as an essential regulatory mechanism for regulating YAP activity and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/enzimologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Pulmonares/enzimologia , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Células A549 , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/patologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisina , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fatores de Transcrição , Carga Tumoral , Proteínas de Sinalização YAP
9.
J Biol Chem ; 293(13): 4883-4892, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382726

RESUMO

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates various environmental signals to regulate cell growth and metabolism. DEPTOR, also termed DEPDC6, is an endogenous inhibitor of mTORC1 and mTORC2 activities. The abundance of DEPTOR centrally orchestrates the mTOR signaling network. However, the mechanisms by which DEPTOR stability is regulated are still elusive. Here, we report that OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) specifically deubiquitinates DEPTOR in a deubiquitination assay. We found that OTUB1 directly interacted with DEPTOR via its N-terminal domain, deubiquitinated DEPTOR, and thereby stabilized DEPTOR in a Cys-91-independent but Asp-88-dependent manner, suggesting that OTUB1 targets DEPTOR for deubiquitination via a deubiquitinase activity-independent non-canonical mechanism. The interaction between OTUB1 and DEPTOR was enhanced when the cells were treated with amino acids. Moreover, OTUB1 suppressed amino acid-induced activation of mTORC1 in a DEPTOR-dependent manner and thereby ultimately controlled cellular autophagy, cell proliferation, and size. Our findings reveal a mechanism that stabilizes the mTORC1 inhibitor DEPTOR via OTUB1's deubiquitinase activity. Our insights may inform research into various mTOR activity-related diseases, such as cancer, and may contribute to the identification of new diagnostic markers and therapeutic strategies for cancer treatments.


Assuntos
Autofagia , Proliferação de Células , Cisteína Endopeptidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Domínios Proteicos , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...