Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551344

RESUMO

Background: Infertility is recognized as a common and worrisome problem of human reproduction worldwide. Based on previous studies, male factors account for about half of all infertility cases. Exposure to environmental toxicants is an important contributor to male infertility. Bisphenol A (BPA) is the most prominent toxic environmental contaminant worldwide affecting the male reproductive system. BPA can impair the function of the Golgi apparatus which is important in spermatogenesis. GGA1 is known as Golgi-localized, gamma adaptin ear-containing, ARF-binding protein 1. Previously, it has been shown that GGA1 is associated with spermatogenesis in Drosophila, however, its function in mammalian spermatogenesis remains unclear. Methods: Gga1 knockout mice were generated using the CRISPR/Cas9 system. Gga1-/- male mice and wild-type littermates received intraperitoneal (i.p.) injections of BPA (40 µg/kg) once daily for 2 weeks. Histological and immunofluorescence staining were performed to analyze the phenotypes of these mice. Results: Male mice lacking Gga1 had normal fertility without any obvious defects in spermatogenesis, sperm count and sperm morphology. Gga1 ablation led to infertility in male mice exposed to BPA, along with a significant reduction in sperm count, sperm motility and the percentage of normal sperm. Histological analysis of the seminiferous epithelium showed that spermatogenesis was severely disorganized, while apoptotic germ cells were significantly increased in the Gga1 null mice exposed to BPA. Our findings suggest that Gga1 protects spermatogenesis against damage induced by environmental pollutants.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Infertilidade Masculina , Motilidade dos Espermatozoides , Animais , Masculino , Camundongos , Infertilidade Masculina/induzido quimicamente , Sêmen , Espermatogênese/genética , Espermatozoides/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
2.
Int J Biol Sci ; 18(8): 3107-3121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637957

RESUMO

Glucocorticoids are essential participants in the regulation of lipid metabolism. On a tissue-specific level, glucocorticoid signal is controlled by 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1). Up-regulation of 11ß-HSD1 expression during non-alcoholic fatty liver disease (NAFLD) has been previously shown, while 11ß-HSD1 inhibition has been shown to reduce hepatic lipids in NAFLD, but the underlying mechanisms remain unclear. Here, in this study, we created in vitro cell culture and in vivo transgenic hepatocyte-specific 11ß-HSD1 mouse models of NAFLD to determine the regulatory mechanisms of 11ß-HSD1 during lipid metabolism dysfunction. We found that 11ß-HSD1 overexpression activated glucocorticoid receptors and promoted their nuclear translocation, and then stimulating gp78. The induction of gp78 sharply reduced expression of Insig2, but not Insig1, which led to up-regulation of lipogenesis regulatory proteins including SREBP1, FAS, SCD1, and ACC1. Our results suggested that overexpression of 11ß-HSD1 induced lipid accumulation, at least partially through the GR/gp78/Insig2/SREBP1 pathway, which may serve as a potential diagnostic and therapeutic target for treatment of NAFLD.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Hepatopatia Gordurosa não Alcoólica , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Glucocorticoides , Humanos , Lipídeos , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...