Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849574

RESUMO

Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.

2.
Cell Death Differ ; 31(3): 280-291, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38383887

RESUMO

Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.


Assuntos
Interferon Tipo I , Proteínas de Membrana , Proteínas Tirosina Fosfatases , Receptores de Superfície Celular , Proteínas Roundabout , Viroses , Animais , Camundongos , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Roundabout/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Superfície Celular/metabolismo
4.
Nature ; 607(7920): 776-783, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859176

RESUMO

Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.


Assuntos
Adenosina Desaminase , Interferon Tipo I , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Apoptose , Caspase 8/metabolismo , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Camundongos , Mutação , Necroptose , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Cell Death Differ ; 28(11): 3022-3035, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34091599

RESUMO

Dysfunction of adipocytes and adipose tissue is a primary defect in obesity and obesity-associated metabolic diseases. Interferon regulatory factor 3 (IRF3) has been implicated in adipogenesis. However, the role of IRF3 in obesity and obesity-associated disorders remains unclear. Here, we show that IRF3 expression in human adipose tissues is positively associated with insulin sensitivity and negatively associated with type 2 diabetes. In mouse pre-adipocytes, deficiency of IRF3 results in increased expression of PPARγ and PPARγ-mediated adipogenic genes, leading to increased adipogenesis and altered adipocyte functionality. The IRF3 knockout (KO) mice develop obesity, insulin resistance, glucose intolerance, and eventually type 2 diabetes with aging, which is associated with the development of white adipose tissue (WAT) inflammation. Increased macrophage accumulation with M1 phenotype which is due to the loss of IFNß-mediated IL-10 expression is observed in WAT of the KO mice compared to that in wild-type mice. Bone-marrow reconstitution experiments demonstrate that the nonhematopoietic cells are the primary contributors to the development of obesity and both hematopoietic and nonhematopoietic cells contribute to the development of obesity-related complications in IRF3 KO mice. This study demonstrates that IRF3 regulates the biology of multiple cell types including adipocytes and macrophages to prevent the development of obesity and obesity-related complications and hence, could be a potential target for therapeutic interventions for the prevention and treatment of obesity-associated metabolic disorders.


Assuntos
Tecido Adiposo/fisiopatologia , Inflamação/fisiopatologia , Fator Regulador 3 de Interferon/genética , Obesidade/genética , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos
6.
Immunity ; 52(6): 978-993.e6, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32362323

RESUMO

Pathways controlling intestinal epithelial cell (IEC) death regulate gut immune homeostasis and contribute to the pathogenesis of inflammatory bowel diseases. Here, we show that caspase-8 and its adapter FADD act in IECs to regulate intestinal inflammation downstream of Z-DNA binding protein 1 (ZBP1)- and tumor necrosis factor receptor-1 (TNFR1)-mediated receptor interacting protein kinase 1 (RIPK1) and RIPK3 signaling. Mice with IEC-specific FADD or caspase-8 deficiency developed colitis dependent on mixed lineage kinase-like (MLKL)-mediated epithelial cell necroptosis. However, MLKL deficiency fully prevented ileitis caused by epithelial caspase-8 ablation, but only partially ameliorated ileitis in mice lacking FADD in IECs. Our genetic studies revealed that caspase-8 and gasdermin-D (GSDMD) were both required for the development of MLKL-independent ileitis in mice with epithelial FADD deficiency. Therefore, FADD prevents intestinal inflammation downstream of ZBP1 and TNFR1 by inhibiting both MLKL-induced necroptosis and caspase-8-GSDMD-dependent pyroptosis-like death of epithelial cells.


Assuntos
Caspase 8/genética , Proteína de Domínio de Morte Associada a Fas/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Quinases/metabolismo , Animais , Apoptose/genética , Caspase 8/metabolismo , Morte Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas Quinases/genética
7.
Nature ; 580(7803): 391-395, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296175

RESUMO

The biological function of Z-DNA and Z-RNA, nucleic acid structures with a left-handed double helix, is poorly understood1-3. Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) is a nucleic acid sensor that contains two Zα domains that bind Z-DNA4,5 and Z-RNA6-8. ZBP1 mediates host defence against some viruses6,7,9-14 by sensing viral nucleic acids6,7,10. RIPK1 deficiency, or mutation of its RIP homotypic interaction motif (RHIM), triggers ZBP1-dependent necroptosis and inflammation in mice15,16. However, the mechanisms that induce ZBP1 activation in the absence of viral infection remain unknown. Here we show that Zα-dependent sensing of endogenous ligands induces ZBP1-mediated perinatal lethality in mice expressing RIPK1 with mutated RHIM (Ripk1mR/mR), skin inflammation in mice with epidermis-specific RIPK1 deficiency (RIPK1E-KO) and colitis in mice with intestinal epithelial-specific FADD deficiency (FADDIEC-KO). Consistently, functional Zα domains were required for ZBP1-induced necroptosis in fibroblasts that were treated with caspase inhibitors or express RIPK1 with mutated RHIM. Inhibition of nuclear export triggered the Zα-dependent activation of RIPK3 in the nucleus resulting in cell death, which suggests that ZBP1 may recognize nuclear Z-form nucleic acids. We found that ZBP1 constitutively bound cellular double-stranded RNA in a Zα-dependent manner. Complementary reads derived from endogenous retroelements were detected in epidermal RNA, which suggests that double-stranded RNA derived from these retroelements may act as a Zα-domain ligand that triggers the activation of ZBP1. Collectively, our results provide evidence that the sensing of endogenous Z-form nucleic acids by ZBP1 triggers RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammatory conditions-particularly in individuals with mutations in RIPK1 and CASP817-20.


Assuntos
Inflamação/metabolismo , Necroptose , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caspase 8/metabolismo , Feminino , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Nucleicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Dermatopatias/genética , Dermatopatias/metabolismo , Dermatopatias/patologia
8.
Nature ; 580(7804): E10, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322058

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Oncotarget ; 7(15): 19327-40, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27034012

RESUMO

Neutrophil extracellular traps (NETs) are released by activated neutrophils to ensnare and kill microorganisms. NETs have been implicated in tissue injury since they carry cytotoxic components of the activated neutrophils. We have previously demonstrated the generation of NETs in infected murine lungs during both primary pneumococcal pneumonia and secondary pneumococcal pneumonia after primary influenza. In this study, we assessed the correlation of pneumococcal capsule size with pulmonary NETs formation and disease severity. We compared NETs formation in the lungs of mice infected with three pneumococcal strains of varying virulence namely serotypes 3, 4 and 19F, as well as a capsule-deficient mutant of serotype 4. In primary pneumonia, NETs generation was strongly associated with the pneumococcal capsule thickness, and was proportional to the disease severity. Interestingly, during secondary pneumonia after primary influenza infection, intense pulmonary NETs generation together with elevated myeloperoxidase activity and cytokine dysregulation determined the disease severity. These findings highlight the crucial role played by the size of pneumococcal capsule in determining the extent of innate immune responses such as NETs formation that may contribute to the severity of pneumonia.


Assuntos
Cápsulas Bacterianas/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia , Animais , Cápsulas Bacterianas/genética , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Mutação , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Sorotipagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Virulência/genética , Virulência/imunologia
10.
J Biol Chem ; 290(24): 14875-83, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25922079

RESUMO

Obesity and metabolic disorders such as insulin resistance and type 2 diabetes have become a major threat to public health globally. The mechanisms that lead to insulin resistance in type 2 diabetes have not been well understood. In this study, we show that mice deficient in MAPK phosphatase 5 (MKP5) develop insulin resistance spontaneously at an early stage of life and glucose intolerance at a later age. Increased macrophage infiltration in white adipose tissue of young MKP5-deficient mice correlates with the development of insulin resistance. Glucose intolerance in MKP5-deficient mice is accompanied by significantly increased visceral adipose weight, reduced AKT activation, enhanced p38 activity, and increased inflammation in visceral adipose tissue when compared with wild-type (WT) mice. Deficiency of MKP5 resulted in increased inflammatory activation in macrophages. These findings thus demonstrate that MKP5 critically controls inflammation in white adipose tissue and the development of metabolic disorders.


Assuntos
Tecido Adiposo/patologia , Inflamação/enzimologia , Resistência à Insulina , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Tecido Adiposo/enzimologia , Animais , Glucose/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética
11.
Cell Rep ; 10(10): 1722-1734, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25772359

RESUMO

The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5), a dual-specificity phosphatase (DUSP), in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.

12.
PLoS One ; 10(3): e0120755, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816341

RESUMO

OBJECTIVE: Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2) in inflammation during macrophage-adipocyte interaction. METHODS: White adipose tissues (WAT) from mice either on a high-fat diet (HFD) or normal chow (NC) were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA) and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK)- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction. RESULTS: HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs). MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction. CONCLUSION: MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.


Assuntos
Adipócitos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adipócitos/citologia , Animais , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Tirosina Fosfatases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases p38 Ativadas por Mitógeno/genética
13.
J Immunol ; 194(7): 3088-95, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25716993

RESUMO

Members of the MAPK phosphatase (MKP) protein family play critical roles in immune responses through differential regulation of MAPK activation. In this study, we show that MKP7, also known as dual-specificity phosphatase 16, was required for CD4(+) T cell responses in vivo. Mkp7(-/-) CD4(+) T cells exhibited enhanced ERK and JNK activation, and produced increased amount of IL-2 compared with Mkp7(+/+) cells upon activation. Mkp7(-/-) CD4(+) T cells were selectively defective in Th17 differentiation in vitro, which was rescued by blocking IL-2 or inhibition of ERK activation. Furthermore, mice carrying Mkp7(-/-) T cells were deficient in generation of Th17 and T follicular helper cells in vivo, and were resistant to autoimmune experimental encephalomyelitis. Our results thus demonstrate an essential role of MKP7 in effector T cell function.


Assuntos
Diferenciação Celular/genética , Fosfatases de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Interleucina-2/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Fosfatases de Especificidade Dupla/deficiência , Fosfatases de Especificidade Dupla/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Genes Letais , Interleucina-2/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Fosfatases da Proteína Quinase Ativada por Mitógeno/deficiência , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
14.
Infect Immun ; 82(11): 4789-801, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156742

RESUMO

Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor alpha (TNF-α), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-α and mRNA expression of IL-1ß. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1ß and TNF-α. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages.


Assuntos
Infecções por Blastocystis/metabolismo , Blastocystis/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Macrófagos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Infecções por Blastocystis/imunologia , Linhagem Celular , Citocinas/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Técnicas de Cultura de Tecidos
15.
Bioresour Technol ; 101(14): 5213-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20206510

RESUMO

Activated sludge is widely used to treat industrial wastewater, but its efficiency is affected by a variety of factors, including toxic substances such as tetrahydrofuran (THF). In this study, we examined the toxicity of THF at different concentrations (0-320 mM) on the microbial community in activated sludge. A remarkable dose-dependent decrease in the total organic compound removal rate and culturable bacteria and fungi was observed. At THF concentrations higher than 160 mM, a decrease in pH to 3.0 was observed. The activities of five enzymes (catalase, dehydrogenase, urease, phosphatase and protease) analyzed were all significantly inhibited (p<0.01) at THF concentrations higher than 160 mM, especially dehydrogenase activity, which lost 95.4% of its activity at 320 mM THF. Microbial community analysis by PCR-DGGE revealed a substantial shift in the community structure and a reduction in diversity at a low THF concentration (20mM). These results suggest that THF is much more toxic than reported in the literature, indicating its acute toxicity to microorganisms.


Assuntos
Técnicas Microbiológicas/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catalase/química , Análise por Conglomerados , Furanos/toxicidade , Concentração de Íons de Hidrogênio , Compostos Orgânicos/química , Oxirredutases/química , Monoéster Fosfórico Hidrolases/química , Filogenia , Esgotos , Urease/química
16.
Bioresour Technol ; 100(11): 2762-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19230656

RESUMO

Statistics-based experimental designs were applied to optimize the culture conditions for tetrahydrofuran (THF) degradation by a newly isolated Rhodococcus sp. YYL that tolerates high THF concentrations. Single factor experiments were undertaken for determining the optimum range of each of four factors (initial pH and concentrations of K(2)HPO(4).3H(2)O, NH(4)Cl and yeast extract) and these factors were subsequently optimized using the response surface methodology. The Plackett-Burman design was used to identify three trace elements (Mg(2+), Zn(2+)and Fe(2+)) that significantly increased the THF degradation rate. The optimum conditions were found to be: 1.80 g/L NH(4)Cl, 0.81 g/L K(2)HPO(4).3H(2)O, 0.06 g/L yeast extract, 0.40 g/L MgSO(4).7H(2)O, 0.006 g/L ZnSO(4).7H(2)O, 0.024 g/L FeSO(4).7H(2)O, and an initial pH of 8.26. Under these optimized conditions, the maximum THF degradation rate increased to 137.60 mg THF h(-1) g dry weight in Rhodococcus sp. YYL, which was nearly five times of that by the previously described THF degrading Rhodococcus strain.


Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/métodos , Furanos/metabolismo , Modelos Biológicos , Rhodococcus/classificação , Rhodococcus/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Biodegradação Ambiental , Simulação por Computador , Meios de Cultura/química , Meios de Cultura/metabolismo , Interpretação Estatística de Dados , Furanos/isolamento & purificação , Modelos Estatísticos , Especificidade da Espécie , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...