Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(4): e14415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962818

RESUMO

The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Lacase , Lignina , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/enzimologia , Lacase/metabolismo , Lacase/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Proantocianidinas/metabolismo , Cor , Pigmentação/genética
2.
Mol Biol Rep ; 50(6): 4865-4873, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37052804

RESUMO

BACKGROUND: The naturally colored brown cotton fiber is the most widely used environmentally friendly textile material, which primarily contains proanthocyanidins and their derivatives. Many structural genes in the flavonoid synthesis pathway are known to improve the genetic resources of naturally colored cotton. Among them, DFR is a crucial late enzyme to synthesis both anthocyanins and proanthocyanidins in the plant flavonoid pathway. METHODS: The protein sequences of GhDFRs were analyzed using bioinformatic tools. The expression levels of GhDFRs in various tissues and organs of upland cotton Zongxu1 (ZX1), were analyzed by quantitative real-time PCR, and the expression pattern of GhDFR1 during fiber development of white cotton and brown cotton was analyzed further. The function of GhDFR1 in NCC ZX1 was preliminarily analyzed by virus induced gene silencing (VIGS) technology. RESULTS: Bioinformatic analysis revealed that GhDFRs sequences in upland cotton genome were extremely conserved. Furthermore, evolutionary tree analysis revealed that the functions of GhDFR1 and GhDFR2, and GhDFR3 and GhDFR4, presented different and shared some similarities. Our study showed GhDFR1 and GhDFR2 were specifically expressed in fibers, while GhDFR3 and GhDFR4 were specifically expressed in petals. GhDFR1 was exclusively expressed in brown cotton fiber at various stages of development and progressively increased with the growth of fiber, but the trend of expression in white cotton was quite the opposite. We silenced GhDFR1 expression in brown cotton fiber using VIGS technology, and observed the VIGS-interference plants. After reducing the expression level of GhDFR1, the period for significant GhDFR1 expression in the developing fibers changed, reducing the content of anthocyanins, and lightening the color of mature cotton fibers. CONCLUSION: GhDFR1 was preferentially expressed in brown cotton during fiber development. The timing of GhDFR1 expression for flavonoid synthesis altered, resulting in anthocyanin contents reduced and the fiber color of the GhDFR1i lines lightened. These findings showed the role of GhDFR1 in fiber coloration of NCC and provided a new candidate for NCC genetic improvement.


Assuntos
Flavonoides , Proantocianidinas , Flavonoides/genética , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Proteínas de Plantas/metabolismo , Fibra de Algodão , Clonagem Molecular , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Perfilação da Expressão Gênica/métodos
3.
Plant Mol Biol ; 112(1-2): 19-31, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929454

RESUMO

Pectin widely exists in higher plants' cell walls and intercellular space of higher plants and plays an indispensable role in plant growth and development. We identified 55 differentially expressed genes related to pectin degradation by transcriptomic analysis in the male sterile mutant, ms1. A gene encoding pectin methylesterase (GhPME21) was found to be predominantly expressed in the developing stamens of cotton but was significantly down-regulated in ms1 stamens. The tapetal layer of GhPME21 interfered lines (GhPME21i) was significantly thickened compared to that of WT at the early stage; anther compartment morphology of GhPME21i lines was abnormal, and the microspore wall was broken at the middle stage; Alexander staining showed that the pollen grains of GhPME21i lines differed greatly in volume at the late stage. The mature pollen surfaces of GhPME21i lines were deposited with discontinuous and broken sheets and prickles viewed under SEM. Fewer pollen tubes were observed to germinate in vitro in GhPME21i lines, while tiny of those in vivo were found to elongate to the ovary. The seeds harvested from GhPME21i lines as pollination donors were dry and hollow. The changes of phenotypes in GhPME21i lines at various stages illustrated that the GhPME21 gene played a vital role in the development of cotton stamens and controlled plant fertility by affecting stamen development, pollen germination, and pollen tube elongation. The findings of this study laid the groundwork for further research into the molecular mechanisms of PMEs involved in microspore formation and the creation of cotton male sterility materials.


Assuntos
Gossypium , Proteínas de Plantas , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Pectinas , Regulação da Expressão Gênica de Plantas , Flores , Infertilidade das Plantas/genética
4.
Plant Biotechnol J ; 20(8): 1546-1560, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503731

RESUMO

Naturally coloured cotton (NCC) fibres need little or no dyeing process in textile industry to low-carbon emission and are environment-friendly. Proanthocyanidins (PAs) and their derivatives were considered as the main components causing fibre coloration and made NCCs very popular and healthy, but the monotonous fibre colours greatly limit the wide application of NCCs. Here a G. hirsutum empurpled mutant (HS2) caused by T-DNA insertion is found to enhance the anthocyanidins biosynthesis and accumulate anthocyanidins in the whole plant. HPLC and LC/MS-ESI analysis confirmed the anthocyanidins methylation and peonidin, petunidin and malvidin formation are blocked. The deficiency of GhOMT1 in HS2 was associated with the activation of the anthocyanidin biosynthesis and the altered components of anthocyanidins. The transcripts of key genes in anthocyanidin biosynthesis pathway are significantly up-regulated in HS2, while transcripts of the genes for transport and decoration were at similar levels as in WT. To investigate the potential mechanism of GhOMT1 deficiency in cotton fibre coloration, HS2 mutant was crossed with NCCs. Surprisingly, offsprings of HS2 and NCCs enhanced PAs biosynthesis and increased PAs levels in their fibres from the accumulated anthocyanidins through up-regulated GhANR and GhLAR. As expected, multiple novel lines with improved fibre colours including orange red and navy blue were produced in their generations. Based on this work, a new strategy for breeding diversified NCCs was brought out by promoting PA biosynthesis. This work will help shed light on mechanisms of PA biosynthesis and bring out potential molecular breeding strategy to increase PA levels in NCCs.


Assuntos
Gossypium , Proantocianidinas , Antocianinas , Cor , Fibra de Algodão , Regulação da Expressão Gênica de Plantas/genética , Gossypium/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proantocianidinas/metabolismo
5.
Anal Chem ; 92(22): 15244-15252, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33108733

RESUMO

Exosomes involved in tumor-specific processes display excellent potential in the early diagnosis of cancer. Herein, a highly sensitive plasmonic colorimetric biosensor was proposed for exosome quantification. The sensing strategy mainly includes two steps: exosome-triggered competitive reaction and etching of gold nanobipyramid@MnO2 nanosheet nanostructures (Au NBP@MnO2 NSs). A competitive reaction between exosomes and placeholder chains induced by exosomes can translate the signal of exosomes into the amount of alkaline phosphatase, which simplifies the experimental process and amplifies the signal. The etching of Au NBP@MnO2 NSs by ascorbic acid generated from the hydrolysis of l-ascorbic acid 2-phosphate by alkaline phosphatase changes the refractive index of Au NBPs, accompanied by the blue shift of the longitudinal localized surface plasmon resonance peak. Profiting from the signal amplification of the competitive reaction and superior refractive index sensitivity of colorimetric substrates, this protocol exhibits high sensitivity toward exosomes within 8.5 × 102 to 8.5 × 104 particles µL-1, along with a detection limit of 1.35 × 102 particles µL-1, which is more sensitive than previously reported colorimetric methods. In addition, a sensitive multicolor visual detection of exosomes was realized by adjusting the aspect ratio of Au NBPs. It is worth mentioning that the Au NBP@MnO2 NSs was synthesized through in situ growth of MnO2 nanosheets on Au NBPs, and the attractive optical properties and ease of etching make Au NBP@MnO2 NSs promising candidates for plasmonic detection.


Assuntos
Fosfatase Alcalina/metabolismo , Técnicas Biossensoriais/métodos , Exossomos/metabolismo , Ouro/química , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Ácido Ascórbico/química , Humanos , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...