Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37893254

RESUMO

Bound states in the continuum (BIC)-based all-silicon metasurfaces have attracted widespread attention in recent years because of their high quality (Q) factors in terahertz (THz) frequencies. Here, we propose and experimentally demonstrate an all-silicon BIC metasurface consisting of an air-hole array on a Si substrate. BICs originated from low-order TE and TM guided mode resonances (GMRs) induced by (1,0) and (1,1) Rayleigh diffraction of metagratings, which were numerically investigated. The results indicate that the GMRs and their Q-factors are easily excited and manipulated by breaking the lattice symmetry through changes in the position or radius of the air-holes, while the resonance frequencies are less sensitive to these changes. The measured Q-factor of the GMRs is as high as 490. The high-Q metasurfaces have potential applications in THz modulators, biosensors, and other photonic devices.

2.
Acta Pharm Sin B ; 13(5): 2017-2038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250149

RESUMO

Neurogenesis decline in hippocampal dentate gyrus (DG) participates in stress-induced depressive-like behaviors, but the underlying mechanism remains poorly understood. Here, we observed low-expression of NOD-like receptor family pyrin domain containing 6 (NLRP6) in hippocampus of stress-stimulated mice, being consistent with high corticosterone level. NLRP6 was found to be abundantly expressed in neural stem cells (NSCs) of DG. Both Nlrp6 knockout (Nlrp6-/-) and NSC-conditional Nlrp6 knockout (Nlrp6CKO) mice were susceptible to stress, being more likely to develop depressive-like behaviors. Interestingly, NLRP6 was required for NSC proliferation in sustaining hippocampal neurogenesis and reinforcing stress resilience during growing up. Nlrp6 deficiency promoted esophageal cancer-related gene 4 (ECRG4) expression and caused mitochondrial dysfunction. Corticosterone as a stress factor significantly down-regulated NLRP6 expression, damaged mitochondrial function and suppressed cell proliferation in NSCs, which were blocked by Nlrp6 overexpression. ECRG4 knockdown reversed corticosterone-induced NSC mitochondrial function and cell proliferation disorders. Pioglitazone, a well-known clinical drug, up-regulated NLRP6 expression to inhibit ECRG4 expression in its protection against corticosterone-induced NSC mitochondrial dysfunction and proliferation restriction. In conclusion, this study demonstrates that NLRP6 is essential to maintain mitochondrial homeostasis and proliferation in NSCs, and identifies NLRP6 as a promising therapeutic target for hippocampal neurogenesis decline linked to depression.

3.
Food Funct ; 14(10): 4706-4721, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37186242

RESUMO

Dietary alkaloid nuciferine isolated from the leaves of Nelumbo nucifera can ameliorate dyslipidemia and liver lipid accumulation, but the underlying mechanism remains unclear. Caspase recruitment domain protein family member 6 (CARD6) is suggested to play an important role in metabolic diseases. This study aimed to investigate the role and the upstream regulator of CARD6 in high fructose-induced liver lipid accumulation and whether and how the anti-lipid accumulation effect of nuciferine was related to CARD6. Herein, we found that high fructose decreased CARD6 expression and increased ASK1 and JNK1/2 phosphorylation in rat livers and hepatocytes, which were attenuated by nuciferine. Furthermore, after the transfection with HA-CARD6, CARD6 siRNA and MIB2 siRNA, the data showed that CARD6 overexpression blocked high fructose-induced upregulation of ASK1 and JNK1/2 phosphorylation as well as lipid accumulation in hepatocytes. CARD6 siRNA reversed the amelioration of nuciferine to high fructose-induced upregulation of ASK1 and JNK1/2 phosphorylation in hepatocyte lipid accumulation. Mechanistically, high fructose upregulated MIB2 expression by interacting with CARD6 and promoting K48-linked CARD6 polyubiquitination and degradation in high fructose-stimulated hepatocytes which were explored by immunoblotting, immunofluorescence, and immunoprecipitation. However, MIB2 siRNA reversed high fructose-induced downregulation of CARD6 and lipid accumulation in hepatocytes. Notably, nuciferine reduced MIB2 expression and thus decreased K48-linked CARD6 polyubiquitination and degradation in the amelioration of high fructose-induced lipid accumulation in hepatocytes. These results suggested that nuciferine exhibited a protective effect against high fructose-induced liver lipid accumulation through blocking MIB2-mediated CARD6 polyubiquitination and degradation.


Assuntos
Fígado Gorduroso , Frutose , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
5.
Pharmaceutics ; 14(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297636

RESUMO

Long-term high fructose intake drives oxidative stress, causing glomerular podocyte injury. Polydatin, isolated from Chinese herbal medicine Polygonum cuspidatum, is used as an antioxidant agent that protects kidney function. However, it remains unclear how polydatin prevents oxidative stress-driven podocyte damage. In this study, polydatin attenuated high fructose-induced high expression of HIF-1α, inhibited NOX4-mediated stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 (SDF-1α/CXCR4) axis activation, reduced reactive oxygen species (ROS) production in rat glomeruli and cultured podocytes. As a result, polydatin up-regulated nephrin and podocin, down-regulated transient receptor potential cation channel 6 (TRPC6) in these animal and cell models. Moreover, the data from HIF-1α siRNA transfection showed that high fructose increased NOX4 expression and aggravated SDF-1α/CXCR4 axis activation in an HIF-1α-dependent manner, whereas polydatin down-regulated HIF-1α to inhibit NOX4 and suppressed SDF-1α/CXCR4 axis activation, ameliorating high fructose-induced podocyte oxidative stress and injury. These findings demonstrated that high fructose-driven HIF-1α/NOX4 pathway controlled podocyte oxidative stress damage. Intervention of this disturbance by polydatin could help the development of the therapeutic strategy to combat podocyte damage associated with high fructose diet.

6.
Front Pharmacol ; 13: 872375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105196

RESUMO

Antidepressant fluoxetine can affect cerebral glucose metabolism in clinic, but the underlying molecular mechanism remains poorly understood. Here, we examined the effect of fluoxetine on brain regional glucose metabolism in a rat model of depression induced by repeated corticosterone injection, and explored the molecular mechanism. Fluoxetine was found to recover the decrease of 18F-fluorodeoxyglucose (18F-FDG) signal in prefrontal cortex (PFC), and increased 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG, a fluorescent glucose analog) uptake in an astrocyte-specific manner in ex vivo cultured PFC slices from corticosterone-induced depressive rats, which were consistent with its improvement of animal depressive behaviors. Furthermore, fluoxetine restricted nuclear translocation of glucocorticoid receptor (GR) to suppress the transcription of thioredoxin interacting protein (TXNIP). Subsequently, it promoted glucose transporter 1 (GLUT1)-mediated glucose uptake and glycolysis of PFC astrocytes through suppressing TXNIP expression under corticosterone-induced depressive state. More importantly, fluoxetine could improve glucose metabolism of corticosterone-stimulated astrocytes via TXNIP-GLUT1 pathway. These results demonstrated that fluoxetine increased astrocytic glucose uptake and glycolysis in corticosterone-induced depression via restricting GR-TXNIP-GLUT1 pathway. The modulation of astrocytic glucose metabolism by fluoxetine was suggested as a novel mechanism of its antidepressant action.

10.
Eur J Pharmacol ; 913: 174616, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780752

RESUMO

High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.


Assuntos
Antioxidantes/farmacologia , Frutose/efeitos adversos , Furanos/farmacologia , Podócitos/efeitos dos fármacos , Edulcorantes/efeitos adversos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas dos Microfilamentos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Podócitos/fisiologia , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/metabolismo
12.
Cell Signal ; 86: 110082, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252535

RESUMO

Glomerular hypertrophy is a crucial factor of severe podocyte damage and proteinuria. Our previous study showed that high fructose induced podocyte injury. The current study aimed to explore a novel molecular mechanism underlying podocyte hypertrophy induced by high fructose. Here we demonstrated for the first time that high fructose significantly initiated the hypertrophy in rat glomeruli and differentiated human podocytes (HPCs). Consistently, it induced inflammatory response with the down-regulation of anti-inflammatory factor zinc-finger protein tristetraprolin (TTP) and the activation of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling in these animal and cell models. Subsequently, high-expression of microRNA-92a-3p (miR-92a-3p) and its target protein cyclin-dependent kinase inhibitor p57 (P57) down-regulation, representing abnormal proliferation and apoptosis, were observed in vivo and in vitro. Moreover, high fructose increased ketohexokinase-A (KHK-A) expression in rat glomeruli and differentiated HPCs. Exogenous IL-6 stimulation up-regulated IL-6/STAT3 signaling and miR-92a-3p, reduced P57 expression and promoted podocyte proliferation, apoptosis and hypertrophy in vitro. The data from anti-inflammatory agent maslinic acid treatment or TTP siRNA transfection showed that high fructose may decrease TTP to activate IL-6/STAT3 signaling in podocyte overproliferation and apoptosis, causing podocyte hypertrophy. Whereas, KHK-A siRNA transfection remarkably restored high fructose-induced TTP down-regulation, IL-6/STAT3 signaling activation, podocyte overproliferation, apoptosis and hypertrophy in differentiated HPCs. Taken together, these results suggested that high fructose possibly increased KHK-A expression to down-regulate TTP, subsequently activated IL-6/STAT3 signaling to interfere with podocyte proliferation and apoptosis by up-regulating miR-92a-3p to suppress P57 expression, causing podocyte hypertrophy. Therefore, the inactivation of IL-6/STAT3 to relieve podocyte hypertrophy mediated by inhibiting KHK-A to increase TTP may be a novel strategy for high fructose diet-associated podocyte injury and proteinuria.


Assuntos
MicroRNAs , Podócitos , Animais , Regulação para Baixo , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose/metabolismo , Hipertrofia/metabolismo , Interleucina-6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Podócitos/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
13.
Phytomedicine ; 91: 153643, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34325092

RESUMO

BACKGROUND: Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation. PURPOSE: Based the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling. METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR. RESULTS: 36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model. CONCLUSIONS: These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.


Assuntos
Atractylodes , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Nefropatias/tratamento farmacológico , Extratos Vegetais/farmacologia , Canais de Cátion TRPC/metabolismo , Animais , Atractylodes/química , Cromatografia Líquida , Frutose/efeitos adversos , Peróxido de Hidrogênio/metabolismo , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Rizoma/química , Transdução de Sinais , Canal de Cátion TRPC6 , Espectrometria de Massas em Tandem
14.
Mol Cell Endocrinol ; 520: 111079, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189863

RESUMO

High fructose is considered a causative factor for oxidative stress and autophagy imbalance that cause kidney pathogenesis. Antioxidant polydatin isolated from Polygonum cuspidatum has been reported to protect against kidney injury. In this study, polydatin was found to ameliorate fructose-induced podocyte injury. It activated mammalian target of rapamycin complex 1 (mTORC1) and suppressed autophagy in glomeruli of fructose-fed rats and in fructose-exposed conditionally immortalized human podocytes (HPCs). Polydatin also enhanced nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant capacity to suppress fructose-induced autophagy activation in vivo and in vitro, with the attenuation of fructose-induced up-regulation of cellular light chain 3 (LC3) II/I protein levels. This effect was abolished by Raptor siRNA in fructose-exposed HPCs. These results demonstrated that polydatin ameliorated fructose-induced autophagy imbalance in an mTORC1-dependent manner via improving Nrf2-dependent antioxidant capacity during podocyte injury. In conclusion, polydatin with anti-oxidation activity suppressed autophagy to protect against fructose-induced podocyte injury.


Assuntos
Antioxidantes/metabolismo , Autofagia , Comportamento Alimentar , Glucosídeos/farmacologia , Homeostase , Fator 2 Relacionado a NF-E2/metabolismo , Podócitos/metabolismo , Estilbenos/farmacologia , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Frutose , Homeostase/efeitos dos fármacos , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/complicações , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Eur J Pharmacol ; 886: 173546, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931782

RESUMO

Magnesium as an enzymatic activator is essential for various physiological functions such as cell cycle, metabolic regulation, muscle contraction, and vasomotor tone. A growing body of evidence supports that magnesium supplementation (mainly magnesium sulfate and magnesium oxide) prevents or treats various types of disorders or diseases related to respiratory system, reproductive system, nervous system, digestive system, and cardiovascular system as well as kidney injury, diabetes and cancer. The ongoing pandemic coronavirus disease 19 (COVID-19) characterized by respiratory tract symptoms with different degrees of important organ and tissue damages has attracted global attention. Particularly, effective drugs are still lacking in the COVID-19 therapy. In this review, we find and summarize the effectiveness of magnesium supplementation on the disorders or diseases, and provide a reference to the possibility of magnesium supplementation for supportive treatment in patients with COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Suplementos Nutricionais , Magnésio/farmacologia , Pneumonia Viral/tratamento farmacológico , Animais , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/prevenção & controle , Humanos , Magnésio/efeitos adversos , Magnésio/uso terapêutico , Pandemias/prevenção & controle , Pneumonia Viral/complicações , Pneumonia Viral/prevenção & controle , Segurança
16.
J Agric Food Chem ; 68(5): 1436-1446, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927917

RESUMO

High fructose intake promotes hepatic lipid accumulation. Pterostilbene, a natural analogue of resveratrol found in diet berries, exhibits a hepatoprotective property. Here, we studied the protection by pterostilbene against fructose-induced hepatic lipid accumulation and explored its possible mechanism. We observed a high expression of microRNA-34a (miR-34a, P < 0.05) and a low expression of its target, sirtuin1 (Sirt1, mRNA: P < 0.01; protein: P < 0.001), with the overactivation of downstream sterol regulatory element-binding protein-1 (SREBP-1) lipogenic pathway (nuclear SREBP-1 protein: P < 0.05; FAS and SCD1 mRNA: P < 0.01), in rat livers, as well as BRL-3A and HepG2 cells, stimulated by fructose. More interestingly, pterostilbene recovered the fructose-disturbed miR-34a expression (0.3-0.5-fold vs fructose control, P < 0.05), Sirt1 protein level (1.2- to 1.5-fold vs fructose control, P < 0.05), and SREBP-1 lipogenic pathway, resulting in significant amelioration of hepatocyte lipid accumulation in animal [hepatic triglyceride and total cholesterol (TG&TC) mg/g·wet tissue: 4.90 ± 0.19, 5.23 ± 0.16, 5.20 ± 0.29 vs fructose control 9.73 ± 1.06, P < 0.001; 3.18 ± 0.30, 3.31 ± 0.39, 3.37 ± 0.47 vs 5.67 ± 0.28, P < 0.001] and cell models (BRL-3A TG&TC mmol/g·protein: 0.123 ± 0.011 vs 0.177 ± 0.004, P < 0.001; 0.169 ± 0.011 vs 0.202 ± 0.008, P < 0.05; HepG2: 0.257 ± 0.005 vs 0.303 ± 0.016, P < 0.05; 0.143 ± 0.004 vs 0.201 ± 0.008, P < 0.001). These results provide the experimental evidence supporting the anti-lipogenic effect of pterostilbene against fructose-induced hepatic lipid accumulation via modulating the miR-34a/Sirt1/SREBP-1 pathway.


Assuntos
Frutose/metabolismo , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Estilbenos/administração & dosagem , Animais , Colesterol/metabolismo , Frutose/efeitos adversos , Fígado/metabolismo , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/metabolismo
17.
Oxid Med Cell Longev ; 2019: 1243215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871537

RESUMO

Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-ß1 (TGF-ß1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-ß1 siRNA transfection showed that TGF-ß1-induced upregulation of CTGF expression and p-p53 activated TGF-ß1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-ß1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-ß1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-ß1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-ß1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.


Assuntos
Fibrose/tratamento farmacológico , Fibrose/metabolismo , Frutose/toxicidade , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/uso terapêutico , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
18.
Phytomedicine ; 63: 152986, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310912

RESUMO

BACKGROUND: Polygonum cuspidatum has been used in traditional Chinese medicine to treat liver disorders associated with oxidative stress, inflammation and lipid accumulation for centuries in patients. PURPOSE: The aim of this study was to examine whether P. cuspidatum extract (PCE) prevented against fructose-induced liver lipid accumulation via regulating Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. METHOD: PCE was administered orally to male Sprague-Dawley rats given 10% fructose drinking water for 6 weeks at 80 and 160 mg/kg once daily for 11 weeks. RESULTS: PCE significantly alleviated liver lipid accumulation in fructose-fed rats with metabolic syndrome. It also inhibited Keap1, activated Nrf2 antioxidant pathway, resulting in the suppression of oxidative stress, evidenced by reducing hydrogen peroxide (H2O2), malondialdehyde (MDA) and hydroxy radical (OH•) levels, and increasing glutathione (GSH)/oxidized glutathione (GSSG) ratio as well as superoxidase dismutase (SOD) and catalase (CAT) activity in the liver of fructose-fed rats. Additionally, PCE up-regulated peroxisome proliferator activated receptor-α (PPAR-α), and down-regulated sterol regulatory element binging protein 1 (SREBP-1), fatty acid synthetase (FAS) and stearoyl-CoA desaturase-1 (SCD-1) in this animal model, being consistent with its reduction of triglyceride (TG) levels. CONCLUSION: These results demonstrate that PCE reduces oxidative stress, and prevent lipid accumulation in the liver of fructose-fed rats possibly by targeting the Keap1/Nrf2 pathway. PCE may be a promising therapeutic strategy for fructose-associated liver lipid accumulation.


Assuntos
Fallopia japonica/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Animais , Antioxidantes/metabolismo , Frutose/efeitos adversos , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
20.
Br J Pharmacol ; 176(11): 1619-1634, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30632134

RESUMO

BACKGROUND AND PURPOSE: Excessive fructose consumption is a risk factor for liver fibrosis. Pterostilbene protects against liver fibrosis. Here, we investigated the potential role and the mechanisms underlying the hepatocyte epithelial-mesenchymal transition (EMT) in fructose-induced liver fibrosis and protection by pterostilbene. EXPERIMENTAL APPROACH: Characteristic features of liver fibrosis in 10% fructose-fed rats and EMT in 5 mM fructose-exposed BRL-3A cells with or without pterostilbene and the change of miR-34a/Sirt1/p53 and transforming growth factor-ß1 (TGF-ß1)/Smads signalling were examined. MiR-34a inhibitor, miR-34a minic, or p53 siRNA were used to explore the role of miR-34a/Sirt1/p53 signalling in fructose-induced EMT and the action of pterostilbene. KEY RESULTS: Pterostilbene prevented fructose-induced liver injury with fibrosis in rats. Fructose caused hepatocyte undergoing EMT, gaining fibroblast-specific protein 1 and vimentin, and losing E-cadherin, effects attenuated by pterostilbene. Moreover, fructose induced miR-34a overexpression in hepatocytes with down-regulated Sirt1, increased p53 and ac-p53, and activated TGF-ß1/Smads signalling, whereas these disturbances were suppressed by miR-34a inhibitor. Additionally, miR-34a inhibitor and p53 siRNA prevented TGF-ß1-driven hepatocyte EMT under fructose exposure. Pterostilbene down-regulated miR-34a, up-regulated Sirt1, and suppressed p53 activation and TGF-ß1/Smads signalling in fructose-stimulated animals and cells but showed no additional effects with miR-34a inhibitor on miR-34a/Sirt1/p53 signalling in fructose-exposed hepatocytes. CONCLUSIONS AND IMPLICATIONS: These results strongly suggest that activation of miR-34a/Sirt1/p53 signalling is required for fructose-induced hepatocyte EMT mediated by TGF-ß1/Smads signalling, contributing to liver fibrosis in rats. Pterostilbene exhibits a protective effect against liver fibrosis at least partly through inhibiting miR-34a/Sirt1/p53 signalling activation.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Cirrose Hepática/metabolismo , Substâncias Protetoras/farmacologia , Estilbenos/farmacologia , Animais , Frutose , Hepatócitos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , MicroRNAs/genética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...