Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 424: 136433, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37244192

RESUMO

The aim of this research was to develop a simple, rapid, sensitive, high-throughput detection method for foodborne Escherichia coli (E. coli) O157:H7 based on the aptamer-modified gold nanoparticles@macroporous magnetic silica photonic microsphere (Au@MMSPM). Such Au@MMSPM array system for E. coli O157:H7 not only integrated sample pretreatment with rapid detection, but also showed highly enhanced effect to develop a highly sensitive SERS assay. The established SERS assay platform gave a wide linear detection range (10-106 CFU/mL) and low limit of detection (2.20 CFU/mL) for E. coli O157:H7. The whole analysis time including sample pretreatment and detection was 110 min. This SERS-based assay platform provided a new high-throughput, highly sensitive and fast detection technology for monitoring E. coli O157:H7 in real samples from the fields of food industry, medicine and environment.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Nanopartículas Metálicas , Dióxido de Silício , Ouro , Microesferas , Oligonucleotídeos , Fenômenos Magnéticos , Microbiologia de Alimentos
2.
ACS Appl Mater Interfaces ; 14(16): 18845-18853, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412789

RESUMO

Development of an efficient detection method to monitor residual mycotoxins in food is very important to ensure food safety, but the complex food matrix seriously affects the detection sensitivity and accuracy. Here, using a three-dimensional ordered macroporous magnetic inverse photonic crystal microsphere (MPCM) as the supporting material, a molecularly imprinted polymer (MIP) that can selectively recognize aflatoxin B1 (AFB1) was synthesized through the dummy template imprinting strategy. The MPCM@MIP prepared by employing 5,7-dimethoxycoumarin as the template and methacrylic acid as the functional monomer displayed selectivity toward AFB1 (imprinting factor of 1.5) and could be used as a solid-phase extraction material. By coupling with high-performance liquid chromatography, an analytical method targeting AFB1 was established and displayed a wide linear range of 5-1000 ng/mL with a low detection limit of 0.4 ng/mL. The method showed a good recovery rate of 73-92% in AFB1-spiked soy sauce and vinegar samples. Moreover, the MPCM@MIP could be separated from the sample solution easily because of its magnetic performance, displaying a promising future not only in the enrichment of AFB1 to improve the detection sensitivity and accuracy but also in the removal of AFB1 from food and environmental samples.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Adsorção , Aflatoxina B1/análise , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , Microesferas , Impressão Molecular/métodos , Polímeros/química , Extração em Fase Sólida/métodos
3.
J Agric Food Chem ; 69(38): 11494-11501, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34530613

RESUMO

A novel multiplex mycotoxin surface-enhanced Raman spectroscopy (SERS) immunoassay was established for the first time on different artificial antigen-modified silica photonic crystal microspheres (SPCMs), which can be integrated into a biochip array to achieve multiplex detection using corresponding antibody-functionalized gold nanoparticles (AuNPs) as the SERS nanotag. The unique optical structure of SPCMs is helpful to find the detection spots easily, accommodate a large amount of probe molecules, and enhance the Raman signal intensity. Such enhancement was confirmed by the simulation result, showing the electric field enhancing effect in SPCMs with AuNPs being 7 times. A competitive SERS immunoassay was established using antigen-modified SPCMs and mycotoxins to compete for binding antibody-functionalized SERS nanotags, displaying broad linear detection ranges of 0.001-0.1 ng/mL for aflatoxin B1 (AFB1), 0.01-10 ng/mL for ochratoxin A (OTA), and 0.001-0.1 ng/mL for zearalenone (ZEN) and low detection limits of 0.82 pg/mL for AFB1, 1.43 pg/mL for OTA, and 1.00 pg/mL for ZEN. In the spiked cereal samples, recovery rates of the method were measured in the range of 70.35-118.04% for the three mycotoxins, which was in agreement with that of the traditional enzyme-linked immunosorbent assay method. The SERS immunoassay for mycotoxin detection also showed high specificity and good repeatability and reproducibility. The new microsphere-based SERS immunoassay biochip only requires a one-step reaction and overcomes the disadvantages of fluorescence and chemiluminescence background signals. The work paves the way for further developing SERS-based microsphere suspension arrays for new targets.


Assuntos
Nanopartículas Metálicas , Micotoxinas , Ouro , Imunoensaio , Limite de Detecção , Microesferas , Micotoxinas/análise , Reprodutibilidade dos Testes , Dióxido de Silício , Análise Espectral Raman
4.
J Agric Food Chem ; 69(1): 528-536, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33377779

RESUMO

A new protein microarray method for multiplex mycotoxin detection in parallel has been established on a stable TiO2-modified porous silicon (PSi) surface. A typical competitive immunoassay microarray protocol has been developed for simultaneous detection of multiplex mycotoxins including aflatoxin B1 (AFB1), ochratoxin A (OTA), and fumonisin B1 (FB1) on the TiO2-PSi surface. The epoxy groups were selected to modify the surface of a TiO2-PSi wafer for the immobilization of artificial antigens of mycotoxins because of their high signal-to-noise ratios. Under optimal conditions, the developed method showed wide linear detection ranges of 0.01-1 ng/mL for OTA, 0.001-1 ng/mL for AFB1, and 0.01-1 ng/mL for FB1 and low limit of detections (LODs) of 0.433 ng/mL for OTA, 0.243 ng/mL for AFB1, and 0.093 ng/mL for FB1. The microarray method can specifically identify the three mycotoxins and their analogues. The recovery rates in real samples were within 75-120%, which were in agreement with that of the classical ELISA method. The new method has great application potential for rapid, sensitive, and high-throughput screening of multiplex mycotoxins and other target molecules.


Assuntos
Micotoxinas/química , Análise Serial de Proteínas/métodos , Silício/química , Imunoensaio , Limite de Detecção , Porosidade , Análise Serial de Proteínas/instrumentação , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...