Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11451, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769443

RESUMO

The SMALL ACIDIC PROTEIN (SMAP) gene is evolutionarily indispensable for organisms. There are two copies of the SMAP gene in the Arabidopsis thaliana genome, namely, SMAP1 and SMAP2. The function of SMAP2 is similar to that of SMAP1, and both can mediate 2,4-D responses in the root of Arabidopsis. This study cloned the AtSMAP2 genetic promoter sequence. Two promoter fragments of different lengths were designed according to the distribution of their cis-acting elements, and the corresponding ß- glucuronidase (GUS) expression vector was constructed. The expression activity of promoters of two lengths, 1993 bp and 997 bp, was studied by the genetic transformation in Arabidopsis. The prediction results of cis-acting elements in the promoter show that there are many hormone response elements in 997 bp, such as three abscisic acid response elements ABRE, gibberellin response elements P-box and GARE-motif and auxin response element AuxRR-core. Through GUS histochemical staining and qRT‒PCR analysis, it was found that the higher promoter activity of PAtSMAP2-997, compared to PAtSMAP2-1993, drove the expression of GUS genes at higher levels in Arabidopsis, especially in the root system. The results provide an important basis for subsequent studies on the regulation of AtSMAP2 gene expression and biological functions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Elementos de Resposta
2.
Funct Integr Genomics ; 24(2): 39, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381201

RESUMO

The COP9 signalosome (CSN) is a conserved protein complex found in higher eukaryotes, consisting of eight subunits, and it plays a crucial role in regulating various processes of plant growth and development. Among these subunits, CSN2 is one of the most conserved components within the COP9 signalosome complex. Despite its prior identification in other species, its specific function in Oryza sativa L. (Rice) has remained poorly understood. In this study, we investigated the role of CSN2 in rice using gene editing CRISPR/Cas9 technology and overexpression techniques. We created two types of mutants: the oscsn2 mutant and the OsCSN2-OE mutant, both in the background of rice, and also generated point mutants of OsCSN2 (OsCSN2K64E, OsCSN2K67E, OsCSN2K71E and OsCSN2K104E) to further explore the regulatory function of OsCSN2. Phenotypic observation and gene expression analysis were conducted on plants from the generated mutants, tracking their growth from the seedling to the heading stages. The results showed that the loss and modification of OsCSN2 had limited effects on plant growth and development during the early stages of both the wild-type and mutant plants. However, as the plants grew to 60 days, significant differences emerged. The OsCSN2 point mutants exhibited increased tillering compared to the OsCSN2-OE mutant plants, which were already at the tillering stage. On the other hand, the OsCSN2 point mutant had already progressed to the heading and flowering stages, with the shorter plants. These results, along with functional predictions of the OsCSN2 protein, indicated that changes in the 64th, 67th, 71st, and 104th amino acids of OsCSN2 affected its ubiquitination site, influencing the ubiquitination function of CSN and consequently impacting the degradation of the DELLA protein SLR1. Taken together, it can be speculated that OsCSN2 plays a key role in GA and BR pathways by influencing the functional regulation of the transcription factor SLR1 in CSN, thereby affecting the growth and development of rice and the number of tillers.


Assuntos
Oryza , Oryza/genética , Aminoácidos , Edição de Genes , Perfilação da Expressão Gênica , Desenvolvimento Vegetal
3.
PLoS One ; 16(9): e0257317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529729

RESUMO

To solve the problem of one-sided pursuit of the shortest distance but ignoring the tourist experience in the process of tourism route planning, an improved ant colony optimization algorithm is proposed for tourism route planning. Contextual information of scenic spots significantly effect people's choice of tourism destination, so the pheromone update strategy is combined with the contextual information such as weather and comfort degree of the scenic spot in the process of searching the global optimal route, so that the pheromone update tends to the path suitable for tourists. At the same time, in order to avoid falling into local optimization, the sub-path support degree is introduced. The experimental results show that the optimized tourism route has greatly improved the tourist experience, the route distance is shortened by 20.5% and the convergence speed is increased by 21.2% compared with the basic algorithm, which proves that the improved algorithm is notably effective.


Assuntos
Formigas/fisiologia , Aplicativos Móveis , Turismo , Algoritmos , Animais , Comportamento Animal , China , Simulação por Computador , Humanos , Internet , Modelos Estatísticos , Movimento , Feromônios
4.
Artigo em Inglês | MEDLINE | ID: mdl-32075321

RESUMO

Rice (Oryza sativa L.), a major staple food for billions of people, was assessed for its phytotoxicity of copper oxide nanoparticle (CuO NPs, size < 50 nm). Under hydroponic condition, seven days of exposure to 62.5, 125, and 250 mg/L CuO NPs significantly suppressed the growth rate of rice seedlings compared to both the control and the treatment of supernatant from 250 mg/L CuO NP suspensions. In addition, physiological indexes associated with antioxidants, including membrane damage and antioxidant enzyme activity, were also detected. Treatment with 250 mg/L CuO NPs significantly increased malondialdehyde (MDA) content and electrical conductivity of rice shoots by 83.4% and 67.0%, respectively. The activity of both catalase and superoxide dismutase decreased in rice leaves treated with CuO NPs at the concentration of 250 mg/L, while the activity of the superoxide dismutase significantly increased by 1.66 times in rice roots exposed to 125 mg/L CuO NPs. The chlorophyll, including chlorophyll a and chlorophyll b, and carotenoid content in rice leaves decreased with CuO NP exposure. Finally, to explain potential molecular mechanisms of chlorophyll variations, the expression of four related genes, namely, Magnesium chelatase D subunit, Chlorophyll synthase, Magnesium-protoporphyrin IX methyltransferase, and Chlorophyllide a oxygenase, were quantified by qRT-PCR. Overall, CuO NPs, especially at 250 mg/L concentration, could affect the growth and development of rice seedlings, probably through oxidative damage and disturbance of chlorophyll and carotenoid synthesis.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Oryza/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Antioxidantes/análise , Clorofila/análise , Genisteína , Oryza/crescimento & desenvolvimento , Estresse Oxidativo , Raízes de Plantas , Plântula/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...