Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(23): 20450-20470, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332782

RESUMO

Process economy and dynamic controllability are critical for DMC/MeOH separation via the PSD process. In this paper, rigorous steady-state and dynamic simulations of atmospheric-pressurized process for DMC/MeOH separation with no, partial, and full heat integration have been carried out with Aspen Plus and Aspen Dynamics. Further investigations have been conducted into the economic design and dynamic controllability of the three neat systems. Simulation results indicated that: the separation process via full and partial heat integration provided TAC savings of 39.2 and 36.2%, respectively, compared to that of no heat integration; the non-heat-integrated system displays good dynamic performance, critical dynamic penalties were demonstrated for both partial and full heat integration processes, while the partial one exhibited a more robust control except for precisely maintaining XB2(DMC); a PCTC scheme with a CC/TC cascade control was proposed to precisely maintain the product concentration for the fully heat-integrated PSD process. A comparison of the economy between atmospheric-pressurized and pressurized-atmospheric sequences indicated that the former is more energy efficient. Further, a comparison of the economy between atmospheric-pressurized and pressurized-atmospheric sequences indicated that the former is more energy efficient. This study will provide new insights into the energy efficiency and has some implications for design and control of DMC/MeOH separation in the industrialization process.

2.
Dalton Trans ; 50(13): 4567-4576, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729233

RESUMO

A hexagonal prismatic Cu6S6 cluster exhibits excellent near-infrared fluorescence properties due to its short Cu-Cu bonds, however, the construction of Cu6S6 cluster-based compounds with extended structures is still a challenge. Here, four new Cu6S6 cluster-based coordination compounds, formulated as Cu3(pymt)3 (1), {(CuCN)2[Cu3(mpymt)3]}n (2), {(CuSCN)[Cu3(mpymt)3]}n (3) and {(CuCN)2[Cu3(dmpymt)3]·CH3CN}n (4) (Hpymt = pyrimidine-2-thiolate, Hmpymt = 4-methyl-pyrimidine-2-thione and Hdmpymt = 4,6-dimethylpyrimidine-2-thione), have been synthesized through the reactions of mercaptopyrimidine derivatives and CuCN or CuSCN under solvo-thermal conditions and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, elemental analysis, and thermal gravimetric analysis. Single-crystal X-ray diffraction analysis reveals that compound 1 is a zero-dimensional Cu6(pymt)6 molecule containing a distorted pseudo-hexagonal prismatic Cu6S6 core. Compounds 2 and 4 with isomorphic frameworks but different organic linkers show a rare three-dimensional framework with nor topology constructed from Cu6(mpymt)6 units and one-dimensional chiral [Cu(CN)]n chains; compared with compound 2, a more hydrophobic one-dimensional channel in compound 4 is observed due to the increase of the methyl groups on the pyrimidine ligand, in which acetonitrile molecules are filled in the channels of compound 4. Compound 3 shows a rare two-dimensional layer constructed from Cu6(mpymt)6 units and one-dimensional puckered (CuSCN)n chains. For the first time, Cu6S6 clusters are connected to one-dimensional inorganic CuCN (or CuSCN) chains through mercaptopyrimidine derivatives to obtain extended arrays in compounds 2-4. The crystals of compounds 1-4 in the solid state all show apparent red light emission. Compound 4 shows sensitive luminescence quenching response to nitrobenzene (NB), and the corresponding quenching constant (Ksv) and detection limit are 2.06 × 103 M-1 and 9.27 ppm, respectively. This study provides a new strategy to construct Cu6S6 cluster-based coordination polymers that have great potential in various applications such as luminescence sensing.

3.
Carbohydr Polym ; 174: 1192-1200, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821044

RESUMO

This study aimed to provide a continuous method for the preparation of magnetic Fe3O4/Chitosan nanoparticles (Fe3O4/CS NPs) that can be applied to efficient removal of heavy metal ions from aqueous solution. Using a novel impinging stream-rotating packed bed, the continuous preparation of Fe3O4/CS NPs reached a theoretical production rate of 3.43kg/h. The as-prepared Fe3O4/CS NPs were quasi-spherical with average diameter of about 18nm and saturation magnetization of 33.5emu/g. Owing to the strong metal chelating ability of chitosan, the Fe3O4/CS NPs exhibited better adsorption capacity and faster adsorption rates for Pb(II) and Cd(II) than those of pure Fe3O4. The maximum adsorption capacities of Fe3O4/CS NPs for Pb(II) and Cd(II) were 79.24 and 36.42mgg-1, respectively. In addition, the Fe3O4/CS NPs shown excellent reusability after five adsorption-desorption cycles. All the above results provided a potential method for continuously preparing recyclable adsorbent with a wide prospect of application in wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...