Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 314: 116620, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207882

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Marsdenia Tenacissima (Roxb.) Wight et Arn. is a traditional Chinese medicine. Its standardized extract (MTE), with the trade name Xiao-Ai-Ping injection, is widely used for cancer treatment. The pharmacological effects of MTE-inducing cancer cell death have been primarily explored. However, whether MTE triggers tumor endoplasmic reticulum stress (ERS)-associated immunogenic cell death (ICD) is unknown. AIM OF THE STUDY: To determine the potential role of endoplasmic reticulum stress in the anti-cancer effects of MTE, and uncover the possible mechanisms of endoplasmic reticulum stress-associated immunogenic cell death induced by MTE. MATERIAL AND METHODS: The anti-tumor effects of MTE on non-small cell lung cancer (NSCLC) were examined through CCK-8 and wound healing assay. Network pharmacology analysis and RNA-sequencing (RNA seq) were performed to confirm the biological changes of NSCLCs after MTE treatment. Western blot, qRT-PCR, reactive oxygen species (ROS) assay, and mitochondrial membrane potential (MMP) assay were used to explore the occurrence of endoplasmic reticulum stress. Immunogenic cell death-related markers were tested by ELISA and ATP release assay. Salubrinal was used to inhibit the endoplasmic reticulum stress response. SiRNA and bemcentinib (R428) were used to impede the function of AXL. AXL phosphorylation was regained by recombinant human Gas6 protein (rhGas6). The effects of MTE on endoplasmic reticulum stress and immunogenic cell death response were also proved in vivo. The AXL inhibiting compound in MTE was explored by molecular docking and confirmed by Western blot. RESULTS: MTE inhibited cell viability and migration of PC-9 and H1975 cells. Enrichment analysis identified that differential genes after MTE treatment were significantly enriched in endoplasmic reticulum stress-related biological processes. MTE decreased mitochondrial membrane potential (MMP) and increased ROS production. Meanwhile, endoplasmic reticulum stress-related proteins (ATF6, GRP-78, ATF4, XBP1s, and CHOP) and immunogenic cell death-related markers (ATP, HMGB1) were upregulated, and the AXL phosphorylation level was suppressed after MTE treatment. However, when salubrinal (an endoplasmic reticulum stress inhibitor) and MTE were co-treated cells, the inhibitory effects of MTE on PC-9 and H1975 cells were impaired. Importantly, inhibition of AXL expression or activity also promotes the expression of endoplasmic reticulum stress and immunogenic cell death-related markers. Mechanistically, MTE induced endoplasmic reticulum stress and immunogenic cell death by suppressing AXL activity, and these effects were attenuated when AXL activity recovered. Moreover, MTE significantly increased the expression of endoplasmic reticulum stress-related markers in LLC tumor-bearing mouse tumor tissues and plasma levels of ATP and HMGB1. Molecular docking illustrated that kaempferol has the strongest binding energy with AXL and suppresses AXL phosphorylation. CONCLUSION: MTE induces endoplasmic reticulum stress-associated immunogenic cell death in NSCLC cells. The anti-tumor effects of MTE are dependent upon endoplasmic reticulum stress. MTE triggers endoplasmic reticulum stress-associated immunogenic cell death by inhibiting AXL activity. Kaempferol is an active component that inhibits AXL activity in MTE. The present research revealed the role of AXL in regulating endoplasmic reticulum stress and enriched the anti-tumor mechanisms of MTE. Moreover, kaempferol may be considered a novel AXL inhibitor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína HMGB1 , Neoplasias Pulmonares , Marsdenia , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Marsdenia/química , Quempferóis/farmacologia , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Morte Celular Imunogênica , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Estresse do Retículo Endoplasmático , Trifosfato de Adenosina , Apoptose , Linhagem Celular Tumoral
2.
Front Pharmacol ; 13: 942996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147318

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options and a poor prognosis. TNBC exists widely reprogrammed lipid metabolism, and its metabolic-associated proteins and oncometabolites are promising as potential therapeutic targets. Dandelion (Taraxacum mongolicum) is a classical herbal medicine used to treat breast diseases based on traditional Chinese medicine theory and was reported to have antitumor effects and lipid regulatory capacities. Our previous study showed that dandelion extract was effective against TNBC. However, whether dandelion extract could regulate the lipid metabolisms of TNBC and exert its antitumor effects via interfering with lipids metabolism remained unclear. In this study, an integrated approach combined with network pharmacology and multi-omics techniques (including proteomics, metabolomics, and lipidomics) was performed to investigate the potential regulatory mechanisms of dandelion extract against TNBC. We first determined the antitumor effects of dandelion extract in vitro and in vivo. Then, network pharmacology analysis speculated the antitumor effects involving various metabolic processes, and the multi-omics results of the cells, tumor tissues, and plasma revealed the changes in the metabolites and metabolic-associated proteins after dandelion extract treatment. The alteration of glycerophospholipids and unsaturated fatty acids were the most remarkable types of metabolites. Therefore, the metabolism of glycerophospholipids and unsaturated fatty acids, and their corresponding proteins CHKA and FADS2, were considered the primary regulatory pathways and biomarkers of dandelion extract against TNBC. Subsequently, experimental validation showed that dandelion extract decreased CHKA expression, leading to the inhibition of the PI3K/AKT pathway and its downstream targets, SREBP and FADS2. Finally, the molecular docking simulation suggested that picrasinoside F and luteolin in dandelion extract had the most highly binding scores with CHKA, indicating they may be the potential CHKA inhibitors to regulate glycerophospholipids metabolisms of TNBC. In conclusion, we confirmed the antitumor effects of dandelion extract against TNBC cells in vitro and demonstrated that dandelion extract could interfere with glycerophospholipids and unsaturated fatty acids metabolism via downregulating the CHKA expression and inhibiting PI3K/AKT/SREBP/FADS2 axis.

3.
J Ethnopharmacol ; 298: 115607, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973634

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Marsdenia tenacissima (Roxb.) Wight et Arn. is a traditional Chinese herbal medicine, and its water-soluble ingredient Marsdenia tenacissima extract (MTE), was widely used for cancer treatment. The multi-pharmacological efficacies and mechanisms of MTE in directly inhibiting tumor cells have been extensively studied. However, the anti-tumor effects of MTE in the tumor-associated macrophages (TAMs) microenvironment remain unclear. AIM OF THE STUDY: To uncover the role of hepatoma-derived growth factor (HDGF) in the interaction between TAMs and non-small cell lung cancer (NSCLC) cells. To evaluate the anti-tumor effects of MTE on the vicious crosstalk between TAMs and NSCLC by targeting HDGF. MATERIALS AND METHODS: HDGF-overexpression PC-9 and H292 NSCLC cell lines were constructed and verified. RNA-sequencing (RNA-seq) was performed in HDGF-overexpression PC-9 cells to probe the differential expression of genes. THP-1-derived macrophages were characterized using specific markers after stimulation with phorbol-12-myristate 13-acetate (PMA) and rhIL-4 or rhHDGF. The role of HDGF both in NSCLC cells and TAMs was determined using approaches like Western blot, qRT-PCR, ELISA, and flow cytometry. The interaction between tumor cells and TAMs were assessed by indirect co-culture H1975, PC-9 cells with M2 type macrophages. The effects of MTE on anti-tumor and macrophage polarization were evaluated in vitro and in vivo. RESULTS: RNA-seq results identified IL-4 as a critical response to HDGF in NSCLC. HDGF induced macrophages polarizing toward M2 type, and promoted NSCLC cells proliferation, migration and invasion in vitro. On the one hand, HDGF dose-dependently promoted IL-4 expression in NSCLC cells. On the other hand, HDGF induced M2 macrophage polarization through the IL-4/JAK1/STAT3 signaling pathway. MTE treatment significantly decreased the expression and secretion of HDGF in NSCLC cells. Meanwhile, MTE treatment led to M2 macrophage repolarization, as evidenced by decreased expression of M2 markers and increased levels of M1 markers. Importantly, MTE treatment significantly suppressed tumor development in C57BL/6 mice bearing Lewis lung cancer (LLC) cells in vivo, accompanied by decreased plasma HDGF levels, reduced M2 macrophages infiltration and increased M1 macrophages proportion in mice tumor tissues. CONCLUSIONS: HDGF upregulated IL-4 expression in NSCLC cells, and promoted M2 polarization by the IL-4/JAK1/STAT3 signaling pathway in macrophages. MTE disturbed the interaction between NSCLC and TAMs in vitro, and inhibited tumor growth in vivo, at least in part, by suppressing HDGF. Therefore, our present study revealed a novel anti-tumor mechanism of MTE through inhibiting HDGF expression and enhancing macrophage polarization from M2 to M1 phenotype.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Marsdenia , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-4 , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Microambiente Tumoral , Macrófagos Associados a Tumor
4.
Pharmacol Res ; 170: 105728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119622

RESUMO

Metabolic reprogramming, characterized by alterations of cellular metabolic patterns, is fundamentally important in supporting the malignant behaviors of cancer cells. It is considered as a promising therapeutic target against cancer. Traditional Chinese medicine (TCM) and its bioactive components have been used in cancer therapy for an extended period, and they are well-known for their multi-target pharmacological functions and fewer side effects. However, the detailed and advanced mechanisms underlying the anticancer activities of TCM remain obscure. In this review, we summarized the critical processes of cancer cell metabolic reprogramming, including glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis, and fatty acid biosynthesis. Moreover, we systemically reviewed the regulatory effects of TCM and its bioactive ingredients on metabolic enzymes and/or signal pathways that may impede cancer progress. A total of 46 kinds of TCMs was reported to exert antitumor effects and/or act as chemosensitizers via regulating metabolic processes of cancer cells, and multiple targets and signaling pathways were revealed to contribute to the metabolic-modulating functions of TCM. In conclusion, TCM has its advantages in ameliorating cancer cell metabolic reprogramming by its poly-pharmacological actions. This review may shed some new light on the explicit recognition of the mechanisms of anticancer actions of TCM, leading to the development of natural antitumor drugs based on reshaping cancer cell metabolism.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Medicina Tradicional Chinesa , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
5.
J Ethnopharmacol ; 274: 113978, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33716082

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Triple-negative breast cancer (TNBC) is the most aggressive and the worst prognosis breast cancer with limited treatment options. Taraxacum mongolicum (also called dandelion) is a traditional Chinese medicine has been used to treat mastitis, breast abscess, and hyperplasia of mammary glands since ancient times. In modern pharmacological research, dandelion has been proven with anti-breast cancer activities. We previously reported that dandelion extract could induce apoptosis in TNBC cells. However, its anti-tumor effects and mechanisms in the tumor microenvironment have not yet been elucidated. AIM OF THE STUDY: Tumor-associated macrophages (TAMs) play an important role in regulating the interaction between tumor cells and the immune system. The present study aimed to investigate the effects and mechanisms of dandelion extract on TNBC cells under the microenvironment of TAMs, as well as its influence on the polarization of M2 macrophages. MATERIALS AND METHODS: M2 macrophages were induced by phorbol-12-myristate 13-acetate (PMA) and interleukin 4 (IL-4), and verified by flow cytometry, quantitative RT-PCR (qRT-PCR), Western blotting, and ELISA. MDA-MB-231 and MDA-MB-468 TNBC cells were co-cultured with the supernatant of M2 macrophage which providing the TAMs microenvironment. The antitumor activity of dandelion extract in TNBC cells was evaluated by MTT assay. The invasive and migratory capacity of TNBC cells was measured by transwell assays. The expression of protein and gene was assessed by Western blotting and qRT-PCR, respectively. RESULTS: TAMs microenvironment promoted the proliferation, migration, and invasion of TNBC cells. However, dandelion extract inhibited the malignant property of MDA-MB-231 and MDA-MB-468 cells induced by TAMs. Both of TAMs and IL-10 caused STAT3 activation and PD-L1 higher expression, the immunosuppressive molecules in TNBC cells, and this effect can be attenuated by IL-10 neutralizing antibody. Dandelion extract exerted inhibition on STAT3 and PD-L1 in TNBC cells under TAMs microenvironment. Furthermore, in M2 macrophages, dandelion extract remarkably promoted the expression of M1-like marker TNF-α, IL-8, and iNOS, but reduced M2-like marker IL-10, CD206, Arginase-1, and TGF-ß. CONCLUSION: Dandelion extract inhibited the proliferation, migration and invasion of TNBC cells in TAMs microenvironment through suppressing IL-10/STAT3/PD-L1 immunosuppressive signaling pathway. Furthermore, dandelion extract promoted the polarization of macrophages from M2 to M1 phenotype. Thus, our results indicated that dandelion may serve as a promising therapeutic strategy for TNBC by modulating tumor immune microenvironment.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-10/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Taraxacum/química , Neoplasias de Mama Triplo Negativas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Humanos , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos
6.
Cancer Cell Int ; 18: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275772

RESUMO

BACKGROUND: Marsdenia tenacissima is an herb medicine which has been utilized to treat malignant diseases for decades. The M. tenacissima extract (MTE) shows significant anti-proliferation activity against non-small cell lung cancer (NSCLC) cells, but the underlying mechanisms remain unclear. In this study, we explored the potential anti-proliferation mechanisms of MTE in NSCLC cells in relation to apoptosis as well as autophagy, which are two critical forms to control cancer cell survival and death. METHODS: The proliferation of H1975 and A549 cells was evaluated by MTT assay. Cell apoptosis was assessed by Annexin V and PI staining, Caspase 3 expression and activity. Autophagy flux proteins were detected by Western blot with or without autophagy inducer and inhibitor. Endogenous LC3-II puncta and LysoTracker staining were monitored by confocal microscopy. The formation of autophagic vacuoles was measured by acridine orange staining. ERK is a crucial molecule to interplay with cell autophagy and apoptosis. The role of ERK on cell apoptosis and autophagy influenced by MTE was determined in the presence of MEK/ERK inhibitor U0126. RESULTS: The significant growth inhibition and apoptosis induction were observed in MTE treated NSCLC cells. MTE induced cell apoptosis coexisted with elevated Caspase 3 activity. MTE also impaired autophagic flux by upregulated LC3-II and p62 expression. Autophagy inducer EBSS could not abolish the impaired autophagic flux by MTE, while it was augmented in the presence of autophagy inhibitor Baf A1. The autophagosome-lysosome fusion was blocked by MTE via affecting lysosome function as evidenced by decreased expression of LAMP1 and Cathepsin B. The molecule ERK became hyperactivated after MTE treatment, but the MEK/ERK inhibitor U0126 abrogated autophagy inhibition and apoptosis induction caused by MTE, suggested that ERK signaling pathways partially contributed to cell death caused by MTE. CONCLUSION: Our results demonstrate that MTE caused apoptosis induction as well as autophagy inhibition in NSCLC cells. The activated ERK is partially associated with NSCLC apoptotic and autophagic cell death in response to MTE treatment. The present findings reveal new mechanisms for the anti-tumor activity of MTE against NSCLC.

7.
Biomed Res Int ; 2018: 8293594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046610

RESUMO

OBJECTIVE: To investigate the effects of electroacupuncture (EA) at "Zusanli" (ST36) and "Shangjuxu"(ST37) on reducing inflammatory reaction and improving intestinal dysfunction in patients with sepsis-induced intestinal dysfunction with syndrome of obstruction of the bowels Qi. METHODS: A total of 71 patients with sepsis-induced intestinal dysfunction with syndrome of obstruction of the bowels Qi were randomly assigned to control group (n=36) and treatment group (n=35). Patients in control group were given conventional therapies including fluid resuscitation, anti-infection, vasoactive agents, mechanical ventilation, supply of enteral nutrition, and glutamine as soon as possible. In addition to conventional therapies, patients in treatment group underwent 20 minutes of EA at ST36-ST37 twice a day for five days. At baseline, day 1, day 3, and day 7 after treatment, the plasma levels of procalcitonin (PCT), tumor necrosis factor-α (TNF-α), intestinal fatty acid-binding proteins (I-FABP), D-lactate, citrulline, and TCM quantitative score of intestinal dysfunction were measured and recorded, respectively. And days on mechanical ventilation (MV), length of stay in intensive care unit (ICU), and 28d mortality were recorded. RESULTS: During treatment, the plasma levels of PCT, TNF-α, I-FABP, D-lactate, and TCM quantitative score of intestinal dysfunction were declining in both groups, while the treatment group showed a significant decline (P<0.05). Plasma levels of citrulline were increasing in both groups, while the treatment group showed a significant increase (P<0.05). However, there were no significant differences in the days on MV, length of stay in ICU, and 28d mortality between two groups (P>0.05). CONCLUSIONS: EA at ST36-ST37 can reduce inflammatory reaction and has protective effects on intestinal function in patients with sepsis-induced intestinal dysfunction with syndrome of obstruction of the bowels Qi. TRIAL REGISTRATION: This trial was registered at http://www.chictr.org.cn/(ChiCTR-IOR-17010910).


Assuntos
Eletroacupuntura , Enteropatias/terapia , Sepse/complicações , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Enteropatias/etiologia , Intestinos/fisiopatologia , Masculino , Pessoa de Meia-Idade , Choque Séptico , Adulto Jovem
8.
Medicine (Baltimore) ; 97(17): e0555, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29703040

RESUMO

BACKGROUND: A pathological increase in intraabdominal pressure (IAP) and inflammatory responses have negative effects on splanchnic, respiratory, cardiovascular, renal, and neurological function in septic patients with intestinal dysfunction. Electro-acupuncture (EA) has been evidenced to have a bidirectional neuron-endocrine-immune system regulating effect in patients with intestinal dysfunction. The purpose of current study was to evaluate the effects of EA at "Zusanli" (ST36) and "Shangjuxu" (ST37) on inflammatory responses and IAP in septic patients with intestinal dysfunction manifested syndrome of obstruction of the bowels Qi. METHODS: Eighty-two septic patients with intestinal dysfunction manifested syndrome of obstruction of the bowels Qi were randomly assigned to control group (n = 41) and EA group (n = 41). Patients in control group were given conventional therapies including fluid resuscitation, antiinfection, vasoactive agents, mechanical ventilation (MV), supply of enteral nutrition, and glutamine as soon as possible. In addition to conventional therapies, patients in EA group underwent 20-minutes of EA at ST36-ST37 twice a day for 5 days. At baseline, posttreatment 1, 3, and 7 days, serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) and IAP levels, were measured, respectively. And days on MV, length of stay in intensive care unit (ICU) and 28 days mortality were recorded. RESULTS: The serum levels of TNF-α and IL-1ß and IAP levels at posttreatment 1, 3, and 7 days were lower significantly in the EA group compared with the control group (mean [SD]; 61.03 [20.39] vs 79.28 [20.69]; P < .005, mean [SD]; 35.34 [18.75] vs 66.53 [30.43]; P < .005 and mean [SD]; 20.32 [11.30] vs 32.99 [20.62]; P = .001, respectively, TNF-α. Mean [SD]; 14.11 [5.21] vs 16.72 [5.59]; P = .032, mean [SD]; 9.02 [3.62] vs 12.10 [4.13]; P = .001 and mean [SD]; 5.11 [1.79] vs 8.19 [2.99]; P < .005, respectively, IL-1ß. Mean [SD]; 14.83 [5.58] vs 17.55 [3.37]; P = .009, mean [SD]; 11.20 [2.57] vs 14.85 [3.01]; P < .005 and mean [SD]; 8.62 [2.55] vs 11.25 [2.72]; P < .005, respectively, IAP). There were no significant differences in the duration of MV, length of stay in ICU, and 28d mortality between the groups. CONCLUSION: EA at ST36-ST37 attenuated inflammatory responses through reduction in serum levels of TNF-α and IL-1ß and IAP in septic patients with intestinal dysfunction manifested syndrome of obstruction of the bowels Qi.


Assuntos
Eletroacupuntura/métodos , Obstrução Intestinal/terapia , Hipertensão Intra-Abdominal/terapia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Unidades de Terapia Intensiva , Interleucina-1beta/sangue , Obstrução Intestinal/etiologia , Obstrução Intestinal/fisiopatologia , Intestinos/inervação , Intestinos/fisiopatologia , Hipertensão Intra-Abdominal/etiologia , Hipertensão Intra-Abdominal/fisiopatologia , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Respiração Artificial/estatística & dados numéricos , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/complicações , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
9.
Int J Mol Med ; 41(4): 2128-2138, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29393411

RESUMO

Human apurinic/apyrimidinic endonuclease 1 (APE1) is a ubiquitous multifunctional protein, which possesses DNA repair and redox activities. High levels of APE1 are associated with chemo­ and radioresistance, and poor prognosis in various types of cancer, including non­small cell lung cancer (NSCLC). Bu­Fei decoction (BFD) is a traditional Chinese herbal formula, which is believed to supplement Qi, clear away heat and nourish the lungs. BFD and modified Bu­Fei decoction (MBFD) have been used in China to treat patients with lung cancer. The present study aimed to evaluate the potential antitumor effects of BFD and MBFD on NSCLC in vitro and in vivo. In addition, the possible contribution of APE1 was examined. MTT assay was used to investigated the anti-tumor activity of BFD and MBFD on H1975 and H292 NSCLC cell lines. The DNA damage of cells in the control and the experimental groups was detected using comet assay. The in vivo anti-tumor effects of BFD and MBFD were evaluated in a NSCLC tumor nude mouse xenograft model. Polymerase chain reaction (PCR), reverse transcription­quantitative PCR (RT­qPCR) analysis and western blot analysis were applied to analyze the mRNA and protein expression levels of APE1 in H1975 and H292 cells, so as to the xenograft tumor tissues. The concentration of APE1 in mice plasma was determined using enzyme linked immunosorbent assay (ELISA). In vitro, BFD and MBFD inhibited the growth of cultured H1975 and H292 NSCLC cells. The results of a comet assay revealed that BFD and MBFD increased DNA damage. Furthermore, the expression levels of APE1 were decreased in response to BFD and MBFD at the mRNA and protein levels. In mice carrying NSCLC xenografts, BFD and MBFD inhibited tumor growth and decreased APE1 expression. In addition, in normal human lung bronchial epithelial BEAS­2B cells, the half maximal inhibitory concentrations of BFD and MBFD were much higher compared with in NSCLC cells, and they had no effect on DNA damage. These results suggested that BFD and MBFD may inhibit the growth of NSCLC, possibly by inhibiting APE1 expression.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética
10.
Oncotarget ; 8(34): 56893-56905, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915640

RESUMO

Tyrosine kinase inhibitors (TKIs) are an effective treatment strategy for non-small cell lung cancer (NSCLC) patients harboring mutations that result in constitutive activation of the epidermal growth factor receptor (EGFR). However, most patients eventually develop resistance to TKIs. This occurs due to additional EGFR mutations or the activation of bypass signaling pathways. In our previous work, we demonstrated that Marsdenia tenacissima extract (MTE) restored gefitinib sensitivity in resistant NSCLC cells with EGFR T790M or K-ras mutations. However, the potential efficacy of MTE in NSCLC cells with resistance mediated by Axl and c-Met, and the related molecular mechanisms need to be elucidated. In this study we evaluated the ability of MTE to restore erlotinib/gefitinib sensitivity in TKI resistant HCC827/ER cells and xenograft mice models. Our results demonstrate that MTE overcomes erlotinib and gefitinib resistance driven by Axl and c-Met in vitro and in vivo. Combination therapy significantly suppressed EGFR downstream molecules and the c-Met and Axl activated bypass signaling pathways. Moreover, we observed that MTE is more efficient at restoring resistance to erlotinib than gefitinib. As the Axl and c-Met mediated bypass pathways share the same downstream signaling cascade as EGFR, simultaneous targeting of these pathways is a promising strategy to overcome acquired resistance of TKIs. Our results demonstrate that MTE treatment attenuates Axl phosphorylation and the associated epithelial-mesenchymal transition, suggesting MTE treatment may be a potential therapeutic strategy for overcoming erlotinib and gefitinib cross-resistance in NSCLC, especially for erlotinib resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...