Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 172: 423-440, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778486

RESUMO

Chemodynamic therapy (CDT) based on generating reactive oxygen species (ROS) is promising for cancer treatment. However, the intrinsic H2O2 is deficient for CDT, and glutathione (GSH) eliminates ROS to protect tumor cells from ROS cytotoxicity. Herein, we propose a strategy to switch the electron flow direction of GSH for O2 reduction and ROS generation rather than ROS clearance by using P(DA-Fc) nanoparticles, which are polymerized from ferrocenecarboxylic acid (Fc) coupled dopamine. P(DA-Fc) NPs with phenol-quinone conversion ability mimic NOX enzyme to deprive electrons from GSH to reduce O2 for H2O2 generation; the following •OH release can be triggered by Fc. Semiquinone radicals in P(DA-Fc) are significantly enhanced after GSH treatment, further demonstrated with strong single-electron reduction ability by calculation. In vitro and in vivo experiments indicate that P(DA-Fc) can consume intrinsic GSH to produce endogenous ROS; ROS generation strongly depends on GSH/pH level and eventually causes tumor cell death. Our work makes the first attempt to reverse the function of GSH from ROS scavenger to ROS producer, explores new roles of PDA-based nanomaterials in CDT beyond photothermal reagents and drug carriers, and provides a new strategy to improve the efficiency of CDT. STATEMENT OF SIGNIFICANCE: P(DA-Fc) nanoparticles performing tumor microenvironment response capacity and tumor reductive power utilize ability were fabricated for CDT tumor suppression. After endocytosis by tumor cells, P(DA-Fc) deprived GSH of electrons for H2O2 and •OH release, mimicking the intrinsic ROS production conducted by NADPH, further inducing tumor cell necrosis and apoptosis. Our work makes the first attempt to reverse the function of GSH from ROS scavenger to producer, explores new functions of PDA-based nanomaterials in CDT beyond photothermal reagents and drug carriers, and provides a new strategy to improve CDT efficiency.


Assuntos
Nanopartículas , Neoplasias , Humanos , Elétrons , Espécies Reativas de Oxigênio , Polifenóis/farmacologia , Peróxido de Hidrogênio , Oxirredução , Portadores de Fármacos , Linhagem Celular Tumoral , Microambiente Tumoral , Glutationa , Neoplasias/tratamento farmacológico
2.
Biomater Transl ; 4(4): 213-233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282708

RESUMO

Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...